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1

Classical Computability Theory

The classical computability theory

• defines the computability and reducibility of sets and functions;

• is interested mainly in the non-computable objects;

• explores the levels of uncomputability (like unsolvability degrees ) and the related structures;

• handles only the discrete structures of countable sets like N or Σ∗;

• is not able to deal with the real numbers and real functions.

However, the computation related to the real numbers is one of the most important tasks in
practice.

A computability theory of real numbers is important for theoretical research as well as for
applications (e.g. in model checking with hybrid systems — E.M.Clerke 2012 — “Turing’s
computable real numbers and why they are still important today.” ).
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Which Real Numbers Are Computable?

Two natural criteria:

• Good computational properties

the computable real numbers should be somehow “calculable”;

• Good mathematical properties

e.g., the class of computable real numbers should be closed under arithmetical operations and
computable functions.

What is a reasonable definition of computable real numbers?
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The First Attempt

CA = {the limits of computable sequences of rational numbers} — class of c.a. reals.

The class CA has good mathematical properties:

• CA is closed under the arithmetical operations +,−,× and ÷, i.e., it is a field.

• CA is closed under computable real functions.

• CA = ∆2, i.e., xA ∈ CA iff A ∈ ∆2, where xA := 0.A =
∑
i∈A 2−(i+1).

CA does not have good computability theoretical property — not good enough!

A computable sequence (xs) of rationals does not supply any “useful” information about its
limit x := limxs in any finite moment.

E.g, after any finitely many steps

• we do not have an upper or lower bound of x;

• we cannot write down definitively any digital of the decimal expansion of x.

CA — minimal requirement of the computability of reals.
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The Second Attempt

Definition of Alan Turing (1936):

A real number is computable if its decimal expansion is calculable by finite means.

“finite means” =⇒ “automatic machine” (Turing machine)

Church-Turing thesis:

TM computability = intuitive computability

More precisely:

x ∈ [0, 1] is computable ⇐⇒ x = 0.f(0)f(1)f(2) . . . for a computable function f .

Some examples of computable real numbers (Turing 1936):

all rational numbers (e.g., 1
3 );

all algebraic reals (e.g.,
√

2 );

the mathematical constants π, e, etc.
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Equivalent Definitions

Theorem of Raphael Robinson (1951): The followings are equivalent:

•• (Decimal representation) x is computable;

• (Binary representation) x = xA := 0.A =
∑
n∈A 2−(n+1) for a computable set A ⊆ N;

• (Dedekind cut representation) Lx := {r ∈ Q : r < x} is a computable set;

• (Cauchy representation) There is a computable sequence (xs) of rationals which converges
to x effectively in the sense

(∀n)(|x− xn| ≤ 2−n) or (∀n)(|xn − xn+1| ≤ 2−n).

(x is “effectively computable”, EC := {x : x is computable}.)

• (Nested interval representation) There is a computable sequence ((as, bs)) of rational intervals
such that

(∀s)(as < as+1 < x < bs+1 < bs) & lim
s→∞

(bs − as) = 0.
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Properties of Computable Real Numbers

• The definition of omputable real numbers is very robust;

• Computable real numbers are calculable. (exact computation);

• The class of computable real numbers is closed under the arithmetical operations;

• The class of computable real numbers is closed under computable operators (computable
functions).

• The class of computable real numbers is closed under effective limit operator.
(The effective limit of a computable sequence of real numbers is computable.)
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Primitive Recursive Real Numbers

Specker (1949) defined primitive recursive reals in the following ways.

• PR3 — by Dedekind’s cuts

• PR2 — by Decimal expansions

• PR1 — by Cauchy sequences

• PR0 — by Nested interval sequences

Specker 1949 and Skordev 2001 have shown that

PR3 ( PR2 ( PR1 ( PR0 = EC

PR1 is widely accepted as the definition of "primitive recursive reals" due to its good
mathematical properties.

More complicated for the polynomial time computable real numbers.
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Examples of Non-Computable Real Numbers

Example of Specker (1949):

A set A is c.e. if it has a computable enumeration — a computable sequence (As) of finite
sets such that

A0 = ∅, (∀s)(As ⊆ As+1),
⋃
As = A.

The real number xA :=
∑
n∈A 2−(n+1) is not computable, if the set A is c.e. but not

computable.

Remark:

The real number xA is the limit of an increasing computable sequence(xs) of rational
numbers defined by xs := xAs;

Consequence:

The limit of an increasing computable sequence of rational numbers is not necessarily
computable.
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Left-Computable Real Numbers

x is left computable if it is the limit of an increasing computable sequence (xs) of rationals.

x ∈ LC ⇐⇒ Lx := {r ∈ Q : r < x} is a c.e. set.

(l.c. reals are also called c.e. or left-c.e.)

Theorem. [Soare 1969, Ambos-Spies et al 2000, Calude et al 2001 ] x is l.c. iff
x = 0.A for a strongly ω-c.e. set A. Where a set A is strongly ω-c.e. if there is a computable
sequence (As) of finite sets which convergences to A such that

(∀n)(∀s) (n ∈ As\As+1 =⇒ (∃m < n)(m ∈ As+1\As))

Remark: A real with a c.e. binary expansion is called strongly c.e.

Theorem. [Ambos-Spies and Z. 2019]

• For any strongly c.e. real x, if x is not computable, then there exists a strongly c.e. y such
that neither x− y nor y − x is c.e.

• For any strongly c.e. real x, if x is not dyadic rational, then there is a strongly c.e. y such
that x+ y is not strongly c.e.

Xizhong Zheng, Arcadia University
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Semi-Computable Real Numbers

x is right computable if −x is l.c. (RC, or co-c.e.).

x is semi-computable if it is l.c. or r.c. (SC := LC ∪RC).

Remark: x is s.c. iff there is a computable sequence (xs) of rational numbers converging to
x monotonically in the sense that (∀s, t)(s > t =⇒ |x− xs| ≤ |x− xt|).

Theorem. [Ambos-Spies, Weihrauch and Z. 2000]
If A,B ⊆ N are Turing incomparable c.e. sets, then the real number x := xA⊕B is not
semi-computable.

Remark:

• xA⊕B = (x2A + 1/3)− x2B+1.

• SC is not closed under the subtraction.

Xizhong Zheng, Arcadia University
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Semi-Computable Real Numbers

CA

EC

RC LC
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Example of Left Computable Reals

The length of a curve.
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Example of Left Computable Reals

The length of a curve.

By incresing the cut points the polygon approximates the curve.

Definition von Camille Jordan (1882):

The length of the curve is defined as the limit limn→∞ ln, where ln is the length of the
polygon with n+ 1 cut points.

Remark: All lengths ln are lower bounds of the length of the curve.

Xizhong Zheng, Arcadia University
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Example of Right Computable Real Numbers

The minimal temperature of a day.
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Problem: The class SC is not closed under the arithmetical operations!
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Weakly Computable Reals (D-C.E.)

Definition. A real x is called d-c.e. if x = y − z for left computable reals y, z.

The class DCE — difference of c.e.

Theorem. [Ambos-Spies, Weihrauch, Z. 2000] x is d-c.e. iff there is a computable
sequence (xs) of rationals which converges weakly effectively to x in the sense that,∑

|xs − xs+1| ≤ ∞.

Remark: (xs) converges effectively if |xs−xs+1| ≤ 2−s for all s. Then
∑
|xs−xs+1| ≤ 2

D-c.e. reals are also called weakly computable, (WC = DCE)

Theorem. [AWZ2000, Ng2005 and Raichev2005]

• WC = Arithm(SC).

• WC is a real closed field.

• SC ( WC ( CA.
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Weakly Computable Reals (D-C.E.)

CA

EC

RC

WC

LC
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The Fourth Characterization of D-c.e. Reals

A sequence (xs) converges c.e. bounded if (∀s)(|x−xs| ≤ σs) where (σs) is a computable
sequence of c.e. reals which converges to 0. (σs :=

∑
i≥s δi for a computable sequence (δs) of

rationals such that the sum
∑
s δs is finite.)

Theorem. [Retting and Z. 2005] A real number x is d-c.e. iff there is a computable
sequence (xs) of rational numbers which converges to x c.e. bounded.

Thereofore, the following are equivalent:

1. x = y − z for some c.e. real numbers y and z;

2. x belongs to the arithmetical closure of c.e. real numbers;

3. There is a computable sequence of rational numbers which converges weakly effectively to x;

4. There is a computable sequence of rational number which converges to x c.e. bounded.

The fifth characterization of DCE related to relative randomness.
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Prefix-Free Kolmogorov Complexity and Randomeness

• The Kolmogorov complexity of a binary word σ relative to a Turing machine M is

KM(σ) := min{|τ | : M(τ) = σ}.

• The (prefix-free) Kolmogorov complexity of σ is defined by K(σ) := KM(σ) for a universal
prefix free Turing machine M .

• A binary sequence A is called Kolmogorov-Levin-Chaitin random if

(∃c)(∀n)(K(A � n) ≥ n− c).

• A real number is called random if its binary expansion is a random sequence.

• Example: The halting-probability ΩU :=
∑
{2−|σ| : U(σ) ↓} of a prefix-free universal

Turing machine U is a c.e. random number (Ω-number, Chaitin 1975)
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Solovay Reducibility

Definition. [Solovay 1975] A c.e. real x is Solovay reducible to c.e. real y (x ≤S y) if
there are computable increasing sequences (xs) and (ys) of rationals s.t.

limxn = x, lim yn = y, (∃c)(∀n)(x− xn ≤ c · (y − yn)).

Lemma. [Solovay] The Solovay reducibility has the Solovay property

x ≤S y =⇒ (∃c)(∀n)(K(x � n) ≤ K(y � n) + c).

Theorem. [Chaitin, Solovay, Kuçera, Slaman and Calude et al] For any real
x, the following conditions are equivalent:

1. x is c.e. and random real;

2. x is an Ω-number;

3. x is Solovay Complete on c.e. reals, i.e., y ≤S x for all c.e. real y.

Conclution: CE = {x : x ≤S Ω}
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Extended Solovay Reducibility

Definition. [Rettinger and Z. 2004] A c.a. real x is Solovay reducible to a c.a. real y
(x ≤2

S y) if there are computable sequences (xs) and (ys) of rational numbers such that

limxs = x, lim ys = y, (∃c)(∀s)
(
|x− xs| ≤ c(|y − ys|+ 2−s)

)
Lemma. Extended Solovay reducibility has the following properties

1. ≤2
S is reflexive and transitive;

2. ≤2
S coincides with the original reducibility of Solovay on c.e. reals;

3. If x is computable, then x ≤2
S y for any y;

4. ≤2
S has Solovay property, i.e.,

x ≤2
S y =⇒ (∃c)(∀n)(K(x � n) ≤ K(y � n) + c).

(If x ≤2
S y and x is random, then y is random too.)
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Weak Computability vs Randomness

Definition. A function f : Rn → R is locally Lipschitz if for each ~x ∈ dom(f), there is a
neighborhood U of ~x and a constant L such that

(∀~u,~v ∈ U)(|f(~u)− f(~v)| ≤ L · |~u− ~v|)

Theorem. Let d be a c.a. real. The class S(≤ d) := {y : y ≤2
S d} is closed under locally

Lipschitz computable functions.

Corollary. The class S(≤ d) is a closed field for any c.a. reals d.

Theorem. [Rettinger and Z. 2004] S(≤ Ω) = WC

Proof idea:

S(≤ Ω) contains all c.e. real and is a field =⇒WC ⊆ S(≤ Ω);

x ≤2
S Ω =⇒ x is c.e. bounded approximable =⇒ x ∈WC
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Theorem. Let d be a c.a. real. The class S(≤ d) := {y : y ≤2
S d} is closed under locally

Lipschitz computable functions.

Corollary. The class S(≤ d) is a closed field for any c.a. reals d.

Theorem. [Rettinger and Z. 2004] S(≤ Ω) = WC

Proof idea:

S(≤ Ω) contains all c.e. real and is a field =⇒WC ⊆ S(≤ Ω);

x ≤2
S Ω =⇒ x is c.e. bounded approximable =⇒ x ∈WC
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Solovay Completeness for DCE

Theorem. [Rettinger and Z. 2004]

1. If d is a c.e. random real number, then S(≤ d) = DCE;

2. The c.e. random reals are S-complete for DCE;

3. Any d-c.e. random real number is either c.e. or co-c.e.
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Theorem. [Rettinger and Z. 2004]

1. If d is a c.e. random real number, then S(≤ d) = DCE;

(A real is d-c.e. iff it is Solovay reducible to a c.e. random real.)

2. The c.e. random reals are S-complete for DCE;

( The Chaitin’s Ω-numbers are S-complete for DCE.)

3. Any d-c.e. random real number is either c.e. or co-c.e.

( Co-c.e. reals are the limits of decreasing computable sequences of rationals.)
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Five Characterizations of DCE

The class DCE has at least five equivalent characterizations:

1. x = y − z for y, z ∈ CE
2. DCE = Arithm(CE)

3. Weakly computable.

4. C.e. bounded convergence

5. x ≤2
S Ω.

Theorem. [Z. 2003, Downey, Wu, Z. 2004] On the Turing degrees of d-c.e. reals,
we have

• There is a d-c.e. real which does not have an ω-c.e. degree.

• Every ω-c.e. degree contains a d-c.e. real.

• There is a ∆0
2 degree with no d-c.e. reals.
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Derivation on DCE

Definition. [Miller 2017] Let x be a d-c.e. and (xs) be a computable sequence of ratio-
nals which converges to x weakly effectively. Let (Ωs) be a computable increasing sequence of
rationals which converges to Ω. Let

∂x = lim
s→∞

x− xs
Ω− Ωs

Theorem. [Miller 2017] For any d-c.e. real x.

• ∂x converges and is not dependent on the d-c.e. approximations of x.

• ∂x = 0 iff x is not random.

• ∂x > 0 iff x is a random left-c.e. real.

• ∂x < 0 iff x is a random right-c.e. real.

• The class of nonrandom d-c.e. reals forms a real closed field.

• If f is computable differentiable function and x is d-c.e. Then, f(x) is d-c.e. and
∂f(x) = f ′(x)∂x (DCE is closed under computable differentiable functions.)

The class DCE is not closed under total computable real functions.
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Computable Real Functions

• Turing’s promise (1936)

• Banach-Mazur (193?, 1963) — sequential computability

• Specker (1949) — (Primitive) recursive real functions — effective limits of (primitive) recursive
sequences of (primitive) recursive functions on rational numbers.

• Grzegorczyk & Lacombe (1955) — sequential computability + effectively uniform continuity

• Weihrauch 1987 — Typ-2 Turing machine

• Ko 1991 — Oracle-Turing machine
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Turing Machine Computability of Real Functions
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Turing Machine Computability of Real Functions

x f(x)
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(xs) (ys)
M

-

6 6

A name of x is a sequence (xs) of rationals which converges effectively to x.
name of x name of f(x)

- -M

Definition. [Weihrauch 1987] A function f :⊆ R → R is computable if there is a
(type-2) Turing machine M which transfers each name of x ∈ dom(f) to a name of f(x).
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Closure under Computable Real Functions

The classes EC and CA are closed under the computable real functions.

Theorem. [Rettinger and Z. 2005] The classes SC undWC are not closed under total
computable real functions. But their closures are the same.

Question: What is the closure of the classes SC and WC under total computable real
functions?

Remark: The closure of real number classes under partial computable real functions is
relative simple because of the following property of Ko:

y = f(x) for a computable real function f ⇐⇒ y ≤T x.
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The Class DBC
A real x is called divergence bounded computable (DBC) if x = f(y) for a d-c.e. real y and

a total computable real function f . (DBC = Comp(WC))
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The Class DBC
A real x is called divergence bounded computable (DBC) if x = f(y) for a d-c.e. real y and

a total computable real function f . (DBC = Comp(WC))

That is, the class DBC is the closure of WC under total computable real functions.

WC

CA

EC

LC
RC

DBC
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Jumps of a Sequence

A jump of size α of a sequence (xs) is an index-pair (i, j) with |xi − xj| = α.
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The index-pairs (0,1), (3,5), (5,7), (9,11) are four non-overlapping jumps of the size larger
than 2−n.
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Divergence Bounded Convergence

Definition.

• A sequence converges h-bounded, if it has at most h(n) non-overlapping jumps of size larger
than 2−n for all n.

• A real x is called h-bc (bounded computable) if there is an h-bounded computable sequence
of rationals which converges to x.

• A real x is called C-bc if there is an h ∈ C and an h-bounded computable sequence of
rationals which converges to x. (C-BC)

Theorem. [Rettinger and Z. 2005]

• DCE ( o(2n)-BC.
(Open problem: DCE = C-BC for some C??)

• g-BC 6= h-BC iff the difference |g(n)− h(n)| is unbounded.

• C-BC is a filed if C contains the constant functions and successor function and is closed
under the addition and composition.
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Divergence Bounded Convergence

Theorem. [Rettinger and Z. 2005] x ∈ DBC iff there is a total computable function
h : N → N and a computable sequence (xs) of rationals which converges h-bounded to x.
That is DBC = C-BC where C is the set of all total computable functions.

DBC — divergence bounded computable

Theorem. [Rettinger and Z. 2005]

• DBC is a field;

• DBC is strictly between the classes DCE and CA;

• DBC is the closure of the class DCE under total computable real functions.
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Convergence-Dominated Reducibility

Definition. [Rettinger and Z. 2018] x is CD-reducible to y (x ≤CD y) if there is a
monotone total computable real function h with h(0) = 0 and two computable sequences (xs)
and (ys) of rationals with limxs = x, lim ys = y and

(∀s)
(
|x− xs| ≤ h(|y − ys|) + 2−s

)
(Extended Solovay: (∀s) (|x− xs| ≤ c(|y − ys|+ 2−s)))

Lemma. x ≤CD y iff there is a computable function h : N → N and two computable
sequences (xs) and (ys) of rationals with limxs = x, lim ys = y and

(∀s, n)
(
|y − ys| ≤ 2−h(n) =⇒ |x− xs| ≤ 2−n + 2−s

)
Theorem. [Rettinger and Z. 2018]
1. x ≤2

S y =⇒ x ≤CD y

2. x ∈ DBC ⇐⇒ x ≤CD Ω, i.e. DBC = DC(≤DC Ω)
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Equivalent Characterizations of DBC

The class of DBC can be equivalently characterized in the following ways.

• Computable closure of DBC

• Computable closure of CE

• Class of d.b.c. reals (DBC = C-BC for computable function class C)

• Class of reals which are CD-reducible to Ω.

Regarding the Turing degrees, we have

Theorem. [Rettinger and Z. 2005]

• There exists ∆0
2 degree which has no d.b.c real numbers.

• There exists d.b.c. degree which has no d-c.e. real numbers.
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Conclusion

1. Computability theory of real numbers is a subarea of a more comprehensive research area
CCA (Computability and Complexity in Analysis). ( http://cca-net.de/.)

2. The following classes of real numbers are explored in this talk:

EC ( LC
RC ( SC ( WC ( DBC ( CA

3. There are further, also infinite, hierarchies of the class CA:

• the Ershov type hierarchies;

• h-monotone computability (m > n =⇒ |x− xm| ≤ h(n)|x− xn|).
• Turing degree hierarchies.

• etc.

4. The class CA is the second level (∆0
2) of the arithmetical hierarchy of real numbers.
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Thank you very much
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