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HF(M)

For a set M, consider the set HF(M) of hereditarily finite sets over
M defined as follows: HF(M) =

⋃
n∈ω

HFn(M), where

HF0(M) = {∅} ∪M,
HFn+1(M) = HFn(M) ∪ {a | a is a finite subset of HFn(M)}.

For a structure M = 〈M, σM〉 of (finite or computable)
signature σ, hereditarily finite superstructure

HF(M) = 〈HF(M);σM,U,∈,∅〉

is a structure of signature σ′ (with HF(M) |= U(a) ⇐⇒ a ∈ M).

Remark: in the case of infinite signature, we assume that σ′

contains an additional relation Sat(x , y) for atomic formulas under
some fixed Gödel numbering.

Fact

HF(M) is the least admissible set over M.
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∆0-formulas and Σ-formulas

Let σ′ = σ ∪ {U1,∈2,∅} where σ is a finite signature.

Definition

The class of ∆0-formulas of signature σ′ is the least one of
formulas containing all atomic formulas of signature σ′ and closed
under ∧,∨,¬, ∃x ∈ y and ∀x ∈ y.

Definition

The class of Σ-formulas of signature σ′ is the least one of
formulas containing all ∆0-formulas of signature σ′ and closed
under ∧,∨, ∃x ∈ y, ∀x ∈ y and ∃x.
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Σ-definability of structures in admissible sets

Let M be a structure of a relational signature 〈Pn0
0 , . . . ,Pnk

k 〉 and
let A be an admissible set.

Definition (Yu. L. Ershov 1985)

M is called Σ-definable in A if there exist Σ-formulas
ϕ(x0, y), ψ(x0, x1, y), ψ∗(x0, x1, y),
ϕ0(x0, . . . , xn0−1, y), ϕ∗0(x0, . . . , xn0−1, y), . . . , ϕk(x0, . . . , xnk−1, y),
ϕ∗k(x0, . . . , xnk−1, y) such that, for some parameter a ∈ A,
M0 � ϕA(x0, a) 6= ∅, η � ψA(x0, x1, a) ∩M2

0 is a congruence on
M0 � 〈M0,P

M0
0 , . . . ,PM0

k 〉, where

PM0
k � ϕAk (x0, . . . , xnk−1) ∩Mnk

0 , k ∈ ω,
ψ∗A(x0, x1, a) ∩M2

0 = M2
0 \ ψA(x0, x1, a),

ϕ∗Ai (x0, . . . , xni−1, a) ∩Mni
0 = Mni

0 \ ϕAi (x0, . . . , xni−1) for all i 6 k,
and the structure M is isomorphic to the quotient structure
M0�η.
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Σ-definability of structures in admissible sets

Σ-definability of a model in an admissible set A is an extension (on
computability in A) of the notion of constructivizability of a model
(in classical computability theory CCT).
For a countable structure M, the following are equivalent:

M is constructivizable (computable);

M is Σ-definable in HF(∅).

For arbitrary structures M and N, we denote by M 6Σ N the fact
that M is Σ-definable in HF(N).

Alexey Stukachev Generalized Computability in Approximation Spaces



Effective Reducibilities on Structures

For arbitrary cardinal α, let Kα be the class of all structures (of
computable signatures) of cardinality 6 α. We define on Kα an
equivalence relation ≡Σ as follows: for M,N ∈ Kα,

M ≡Σ N if M 6Σ N and N 6Σ M.

Structure
SΣ(α) = 〈Kα/ ≡Σ,6Σ〉

is an upper semilattice with the least element, and, for any
M,N ∈ Kα,

[M]Σ ∨ [N]Σ = [(M,N)]Σ,

where (M,N) denotes the model-theoretic pair of M and N.
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It is well-known that
C 6Σ R.

Theorem (Yu. L. Ershov 1985)

C 6Σ L

for any dense linear order of size continuum.

Motivation: find structures M such that

1 M 6Σ L with L used essentially;

2 M is “simple” yet natural and useful in applications.

Possible applications appear when L is treated as the scale of time.
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Definition (Yu. L. Ershov)

1. A first-order theory T is called regular if it is decidable and
model complete.

2. A first-order theory T is called c-simple (constructively
simple) if it is decidable, model complete, ω-categorical, and
has a decidable set of the complete formulas.

Conjecture (Yu.L. Ershov, 1998)

Suppose a theory T has an uncountable model which is
Σ-definable in HF(M), for some structure M with a c-simple
theory. Then T has an uncountable model which is Σ-definable in
HF(L) for some L |= DLO.
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The formal consequence of this conjecture is

Conjecture

Any c-simple theory has an uncountable model which is
Σ-definable in HF(L) for some L |= DLO.

Definition (S.)

A first-order theory T is called sc-simple if it is decidable,
submodel complete, ω-categorical, and has a decidable set of the
complete formulas.

Theorem (S. 2010)

Let T be a sc-simple theory of finite signature. Then there exists
an uncountable model M of T such that M is Σ-definable in
HF(L), L |= DLO.
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Definition

Structure A is called sΣ-definable in HF(B) (denoted as
A 6sΣ B) if A ⊆ HF(B) is a Σ-subset of HF(B), and all the
signature relations and functions of A are ∆-definable in HF(B).
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Theorem (Friedberg 1957)

Let A ⊆ ω be a set such that 0′ 6T A. There exists a set B ⊆ ω
such that

B ′ ≡T A.

Theorem (A.Soskova, I.Soskov 2009)

Let A be a countable structure such that 0′ 6w A. There exists a
structure B such that

B′ ≡w A.

Theorem (S. 2009)

Let A be a structure such that 0′ 6sΣ A. There exists a structure
B such that

B′ ≡sΣ A,

where B′ = (HF(B),Σ−SatHF(B)).
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Definition (S. 2013)

A structure M is called quasiregular if

MMorley ≡sΣ M,

where MMorley is the Morley expansion of M.

Let M be a structure of signature σ, signature σ∗ consists of all
symbols from σ and function symbols fϕ(x1, . . . , xn) for all
∃-formulas ϕ(x0, x1, . . . , xn) ∈ Fσ. A structure MS of signature σ∗
is called existential Skolem expansion of M if |MS | = |M|,
M �σ= MS �σ, and for any ∃-formula ϕ(x0, x1, . . . , xn) ∈ Fσ

MS |= ∀x1 . . . ∀xn(∃xϕ(x , x1, . . . , xn)→

→ ϕ(fϕ(x1, . . . , xn), x1, . . . , xn)).
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Theorem (S. 1996, with corr. 2013)

If Th(M) is regular then HF(M) has the uniformization property if
and only if, for some well-defined existential Skolem expansion MS

of M,
MS ≡sΣ M.

Theorem (S. 2013)

If M is quasiregular then HF(M) has the uniformization property
if and only if, for some well-defined existential Skolem expansion
MS of M,

MS ≡sΣ M.
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Proprsition (S. 2013)

1. If M is quasiregular then HF(M) has a universal Σ-function
and the reduction property.

2. If M is quasiregular and HF(M) has the uniformization
property, then HF(M) is Σ-equivalent to the Moschovakis
expansion M∗.
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Proprsition (S. 1996)

For R and Qp, there exist well-defined sΣ-definable Skolem
expansions.

Proof: use Σ-definable topology and topological properties of
definable subsets.

Corollary (S. 1996, indep. Korovina 1996 for HF(R) )

HF(R) and HF(Qp) have the uniformization property and a
universal Σ-function.
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Interval Extensions of Dense Linear Orders

For an arbitrary dense linear order L = 〈L,6〉, define its interval
extension

I(L) = 〈I ,6,⊆〉

as follows. A nonempty set i ⊆ L is called an interval in L if, for
any l1, l2, l3 ∈ L such that l1, l3 ∈ i and l1 6 l3, from l1 6 l2 6 l3
it follows that l2 ∈ i .

Let I be the set of all intervals in L. Elements of L can be
considered as intervals of the form [l , l ], l ∈ L.

The relation 6 of structure L induces a partial order relation 6 on
set I . Namely, for elements i1, i2 ∈ I , we set i1 6 i2 if and only if
l1 6 l2 for any l1 ∈ i1 and any l2 ∈ i2.
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Let B(L) be the Boolean algebra generated by I(L).

L |= DLO is called continuous if for any A,B ⊂ L such that A < B
and A ∪ B = L, either A has the supremum or B has the infimum.

Theorem

1 If L is continuous, then I(L)Morley ≡sΣ L;
2 If L is continuous, then B(L) ≡sΣ L.
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The definition of an approximation space is given below in the most
general form. However, in this paper we will consider only very
special examples of such spaces, generated by interval extensions.

Definition

An approximation space is an ordered triple

X = 〈X ,F ,6〉,

where X is a topological T0-space, F ⊆ X is a basic subset of
finite elements and 6 is a specialization order on X .

We denote by a ≺ x the fact that a ∈ F and a 6 x .
Also, we will consider so called structured approximation spaces,
i.e., we assume F to be the domain of some structure F .
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Definition

Let L be a dense linear order. The space of temporal processes
over L is the approximation space

T (L) = (P(L) \ {∅}, I(L), ⊆),

where P(L) is the set of all subsets of L and ⊆ is the standard
set-theoretic inclusion relation on P(L).

Definition

Let L be a dense linear order. The atomic space of temporal
processes over L is the approximation space

T0(L) = (P(L) \ {∅}, L, ⊆),

where P(L) is the set of all subsets of L and ⊆ is the standard
set-theoretic inclusion relation on P(L).
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Let σ be a finite predicate signature containing, among other
symbols, a binary predicate symbol 6. We recall the definition of a
formula of dynamic logic DLσ. Namely, formulas of logic DLσ have
variables of two types — for finite objects and for arbitrary,
potentially infinite, objects that can only be accessed with the help
of their finite fragments (approximations). We denote these sets by
FV and SV , respectively. For the formula θ, the sets of its free
variables of these two types are denoted by FV (θ) and SV (θ),
respectively. If θ is a first-order logic formula of signature σ, then
all its variables, including free ones, are considered to be finite.
Variables denoted by uppercase letters (S ,P, . . .) are by default
considered as variables of type SV .
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Definition

The set of ∆DL
0 -formulas of logic DLσ is defined as the least set R

such that

1) if θ is a first-order logic formula of signature σ, then θ ∈ R;

2) if θ ∈ R, S ∈ SV , a ∈ FV , then [a|S ]θ ∈ R, 〈a|S〉θ ∈ R;

3) if θ ∈ R, a, s ∈ FV , then [a|s]θ ∈ R, 〈a|s〉θ ∈ R;

4) if θ0, θ1 ∈ R, then ¬θ0 ∈ R, (θ0 ∧ θ1) ∈ R, (θ0 ∨ θ1) ∈ R
and (θ0 → θ1) ∈ R.

Alexey Stukachev Generalized Computability in Approximation Spaces



Definition

Let X = (X ,F ,6) be a structured approximation space over the
structure F = (F , σF ) of signature σ. The satisfiability relation on
X for a formula ϕ of logic DLσ and an evaluation
γ : SV (ϕ) ∪ FV (ϕ)→ X with γ(x) ∈ F for any x ∈ FV (ϕ),
denoted by X |= ϕ � γ, is defined by induction on the complexity
of ϕ:

1) X |= [x |S ]θ(x) � γ if, for all a ≺ γ(S), X |= θ � γxa ;

2) X |= 〈x |S〉θ(x) � γ if there exists a ≺ γ(S) such that
X |= θ � γxa ;

3) X |= [x |s]θ(x) � γ if, for all a ≺ γ(s), X |= θ � γxa ;

4) X |= 〈x |s〉θ(x) � γ if there exists a ≺ γ(s) such that
X |= θ � γxa ;

5) X |= (∃S)θ(S) � γ if there exists S0 ∈ X such that
X |= θ � γSS0

and so on.
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Definition

An approximation space X1 is ∆DL-reducible to an approximation
space X2 (denoted by X1 6DL X2), if X1 as a structure is
∆DL

0 -definable in the approximation space X2, and

1) the structure of finite elements F1 is ∆DL
0 -definable in X2

inside F2,

2) there is an effective procedure that associates with every
∆DL

0 -formula of space X1 a ∆DL
0 -formula of space X2, which

defines the corresponding predicate in this presentation of
space X1 in space X2.

Theorem

If L is continuous, then approximation spaces T (L) and T0(L) are
effectively DL-equivalent:

T (L) ≡DL T0(L).
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The basic relations of the temporal logic of J.F. Allen are
formalized in dynamic logic as follows: for arbitrary temporal
processes P1,P2 ⊆ T ,

P1 beforeP2 corresponds to the relation [i1|P1][i2|P2](i1 6 i2);
P1 afterP2 corresponds to the relation [i1|P1][i2|P2](i2 6 i1);
P1 whileP2 corresponds to the relation [i1|P1]〈i2|P2〉(i1 = i2);
P1 overlapsP2 corresponds to the relation 〈i1|P1〉〈i2|P2〉(i1 = i2)
(or, in the different interpretation, to the relation
〈i1|P1〉〈i2|P2〉((i1 = i2))∧ ∧(“i1 is a final subinterval of P1) ∧
(“i2 is an initial subinterval of P2))), etc.
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R. Montague formalized the semantic meaning of verbs in English.
We recall some examples of such formalization. First, here is his
analysis of tense Present Progressive.

The sentence (i.e., state) John is walking is true at time p if
and only if there is an open interval i such that p is a
subinterval of i and for all t ∈ i state John walks is true in
moment t.

Interval extensions for the first time were essentially used by
American linguists M. Bennett and B. Partee. As an example, we
consider a formal description of tense Past Simple.
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The sentence (i.e., state) John ate the fish (= α) is true on
interval i , if i is a point interval, α refers to the interval i ′,
and there exists an interval i ′′ < i ′ such that i ′′ < i and the
state John eats the fish is true on i ′′.

For another example, consider the formal description of tense
Present Perfect.

The sentence (i.e., state) John has eaten the fish (= α) is
true on interval i , if i is a point interval, α refers to the
interval i ′, i is a subinterval of i ′ and there is an interval
i ′′ < i ′ such that either i is the final point of i ′′, or i ′′ < i and
the state John eats the fish is true on i ′′.
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It is easy to construct ∆DL
0 -formulas of signature 〈6,⊆〉 describing

the corresponding relations between these processes (or states) in
the space of temporal processes T . Namely,

p ⊆ “John is walking” ⇐⇒
⇐⇒ 〈i |“John walks”〉((p ⊆ i) ∧ (“i is an open interval”)),

p ⊆ “John ate the fish” ⇐⇒ [i |“John eats the fish”](i < p),

p ⊆ “John has eaten the fish” ⇐⇒ [i |“John eats the fish”](i 6 p).
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In the examples above we consider the states John walks,
John is walking, John eats the fish, John ate the fish and
John has eaten the fish, together with the point interval treated
as the “present moment”. Actually, in these examples it is shown
how to define from Present Simple more complex tenses. Hence,
by the results obtained above, the reasoning about the statements
expressed by various combinations of tenses and aspects of English
can be carried using some uniform and effective procedure.

The structure of tenses and aspects of verbs in Russian is rather
different than that in English. Namely, with three tenses (Present,
Past and Future), there are two aspects: Perfect and Imperfect.
The main difficulty for the analysis of Russian verbs is that these
two aspects are independent in sense there is no basic and no
derivable one.
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