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HTP: Hilbert’s Tenth Problem

Definition
For a ring R, Hilbert’s Tenth Problem for R is the set

HTP(R) = {f ∈ R[X0,X1, . . .] : (∃~a ∈ R<ω) f (a0, . . . ,an) = 0}

of all polynomials (in several variables) with solutions in R.

So HTP(R) is computably enumerable from the atomic diagram ∆(R).

Hilbert’s original formulation in 1900 demanded a decision procedure
for HTP(Z).

Theorem (Matiyasevich-Davis-Putnam-Robinson, 1970)

HTP(Z) is undecidable: indeed, HTP(Z) ≡1 ∅′.

MDPR showed that ∅′ is diophantine in Z, i.e., ∃-definable there.
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Enumerating HTP(Z): sums of three cubes
Theorem (Booker, March 2019)

(X 3
1 + X 3

2 + X 3
3 − 33) lies in HTP(Z):

(8,866,128,975,287,528)3 + (−8,778,405,442,862,239)3 +
(−2,736,111,468,807,040)3 = 33.

Theorem (Booker-Sutherland, Sept. 2019)

(X 3
1 + X 3

2 + X 3
3 − 42) lies in HTP(Z):

(−80,538,738,812,075,974)3 + (80,435,758,145,817,515)3 +
(12,602,123,297,335,631)3 = 42.

Conjecture

(X 3
1 + X 3

2 + X 3
3 − k) ∈ HTP(Z) ⇐⇒ k 6≡ ±4 mod 9.

This has been proven for all k ≤ 100 in ω.
=⇒ holds for all k , since the only cubes in Z/(9) are 0 and ±1.
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Hilbert’s Tenth Problem for Q

Major Open Problem
The Turing degree of HTP(Q) is unknown! All Σ1 degrees are possible.

We always knew that HTP(Q) ≤1 HTP(Z):

f (~X ) ∈ HTP(Q) ⇐⇒ (∃~y , z ∈ Z)
[

f
(y1

z
, . . . ,

yn

z

)
= 0 & z > 0

]

⇐⇒
(

Z d · f
(

Y1

Z
, . . . ,

Yn

Z

))2

+

(
Z −

(
1 +

4∑
i=1

V 2
i

))2

∈ HTP(Z).

So the undecidability of HTP(Z) focused attention on HTP(Q).

Proposition
For every subring R ⊆ Q, we have HTP(Q) ≤1 HTP(R), always via the
same 1-reduction as shown above.
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When is HTP(R) ≡T HTP(Q)?

Lemma (Shlapentokh, or Koenigsmann, following J. Robinson)

For each finite set S0 ⊆ P of primes, the semilocal ring R = Z[S0
−1

]
satisfies HTP(R) ≡1 HTP(Q), uniformly in S0.

Here R = Z[W−1], with W = P− S0 cofinite. But we can do better....

Theorem (Eisenträger-M.-Park-Shlapentokh, 2017)
For every c.e. set C with HTP(Q) ≤T C, there is a computably
presentable ring RW = Z[W−1] such that HTP(RW ) ≡T C and the c.e.
set W ⊆ P has lower density 0 in P.

This means that lim infn→∞
|W∩{p0,...,pn}|

n+1 = 0. It is open whether this
theorem can be strengthened to make the limsup equal 0 as well.

The construction by Eisenträger-M.-Park-Shlapentokh is purely
computably theoretic: a finite-injury argument, mixed with coding of C.
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HTP-generic subrings RW of Q
We satisfy, for each f = f0, f1, f2, . . . ∈ Z[X1,X2, . . .],

Pf : f /∈ HTP(RW ) ⇐⇒ (∃ finite Sf ⊆W ) f /∈ HTP(RP−Sf
).

At each stage s, some finite set Sf ,s of primes is forbidden to Pf . Each
Pf tries to find a rational solution f (~x) = 0 whose denominators are not
divisible by the primes in Sf ,s. If it finds one, it enumerates into W the
prime factors of those denominators, so RW contains this solution. The
set Sf ,s is large enough to make the lower density approach 0, and
changes only when Pf is injured by a higher-priority action.

The resulting RW is HTP-generic: for every f , either:
f ∈ HTP(RW ), so we find a solution by enumerating RW ;
or some finite Sf = lims Sf ,s has Sf ∩W = ∅ and f /∈ HTP(RP−Sf

).
So, with an HTP(Q)-oracle, we can decide whether f0 ∈ HTP(RW );
then determine Sf1 from that and decide whether f1 ∈ HTP(RW ), etc.
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Subrings of Q

A subring R of Q is characterized by the set of primes p such that
1
p ∈ R. For each set W of primes, set

RW = Z[W−1] =
{m

n
∈ Q : all prime factors of n lie in W

}
,

the subring generated by inverting all the primes in W .

We often move effectively between subsets V of ω and
W = {pn : n ∈ V} ⊆ P, the set of primes which V describes.

Notice that Rw = Z[W−1] is computably presentable iff W is c.e.,
while RW is a computable subring of Q iff W is computable.

For R ⊆ Q we will treat {f ∈ Z[~X ] : (∃~x ∈ R <ω) f (~x) = 0} as HTP(R).
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Subrings of Q as paths through a tree
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In the signature of rings, the natural topology on the space of all
subrings of Q is the Scott topology. In the extended signature with a
unary predicate for invertibility, it is the Cantor topology. Either way, we
have Lebesgue measure and also Baire category on the space.
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HTP as an operator

HTP maps each subset W ⊆ P of the primes to HTP(RW ), viewed as
a subset of ω by coding. The most obvious analogy is between HTP
and the jump operator W 7→W ′. However, HTP is an enumeration
operator : given any enumeration of W , it can enumerate HTP(RW ),
uniformly and effectively. The jump is not an enumeration operator.

For an enumeration operator E , each set A can enumerate A′, hence
can enumerate E(A′). Therefore E(A′) is c.e. in A:

E(A′) ≤1 A′,

so all sets of the form W = A′ have E(W ) ≤T W <T W ′. In particular,
when W = A′, we have HTP(RW ) ≡1 W . So the HTP operator does
not always increase complexity.

(W ≤1 HTP(RW ) always holds: p ∈W ⇐⇒ (pX − 1) ∈ HTP(RW ).)
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How much difference between W ′ and HTP(RW )?
Not many sets are jumps, but there is a widespread subtler difference:

Proposition
Let E be an enumeration operator. Then, for every relatively c.e. set
W , we have W ′ 6≤1 E(W ).

Proof: Relatively c.e. means that there is a set V <T W such that W is
V -c.e. Now E(W ) must also be V -c.e., so E(W ) ≤1 V ′. However, with
W 6≤T V , we have W ′ 6≤1 V ′, and thus W ′ 6≤1 E(W ).

Theorem (Jockusch for category; Kurtz for measure)
The relatively c.e. sets are co-meager and have measure 1 in 2ω.

Corollary (M, 2017)
For almost all subrings R = RW ⊆ Q, the MDPR result fails:
W ′ 6≤1 HTP(R), and the set W ′ is c.e. in R but not diophantine in R.
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1-reductions vs. Turing reductions
We really want to compare W ′ and HTP(RW ) under Turing reducibility.
Then we could apply:

Theorem (M, 2016, 2020)

For any set C ⊆ ω (such as ∅′), the following are equivalent:
1 HTP(Q) ≥T C.
2 HTP(R) ≥T C for all subrings R of Q.
3 HTP(R) ≥T C for a non-meager set of subrings R.

Additionally, HTP(Q) is low ⇐⇒ a non-meager set of subrings RW
all satisfy (HTP(RW ))′ ≤T W ′.

It is open whether a similar equivalence holds for Lebesgue measure.

Almost all sets W are generalized low1, meaning that W ′ ≡T ∅′ ⊕W .
So the following equivalence holds on a comeager set of measure 1:

∅′ ≤T HTP(RW ) ⇐⇒ W ′ ≤T HTP(RW ).

.
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Trying to compute the jump

Generalized lowness shows that it is possible for an enumeration
operator to compute the jump in most cases:
Let E(W ) = ∅′ ⊕W . Then W ′ ≤T E(W ) on a comeager set, and on a
set of measure 1, although of course it is far less common to have
W ′ ≤1 E(W ).

Possibly this could hold of the HTP operator, but it cannot be uniform:

Theorem
For each enumeration operator E and each Turing functional Ψ, the set

{W ⊆ ω : W ′ 6= ΨE(W )}

has positive measure. Thus it is impossible for E(W ) to compute W ′

uniformly on a set of measure 1.
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Proving the theorem

Fix e such that e ∈ A′ iff A omits a long interval:

ΦA
e (n) =

{
0, if (∃m > 0) {m,m + 1, . . . ,2m} ∩ A = ∅;
↑, otherwise.

At least half of all A have e /∈ A′, so there is some σ such that

µ({A ⊆ ω : σ v E(A) & Ψσ(e)↓= 0}) > 0.

Fix a finite S0 with σ v E(S0) for whichW = {A : S0 ⊆ A & σ v E(A)}
has measure > 0. Then fix an m > max(S0 ∪ {0}). Set

V = {B ∈ 2ω : (∃A ∈ W) B = A− {m,m + 1, . . . ,2m}}.

Now µ(V) ≥ µ(W)
2m+1 > 0, and ΨE(B)(e) = Ψσ(e)↓= 0 6= B′(e) for B ∈ V.
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HTP-complete sets
Definition
A set W is HTP-complete if W ′ ≤1 HTP(RW ). (In particular, this holds
if W ′ is diophantine in RW .)

We have seen that HTP-completeness is uncommon, in terms of
Lebesgue measure and Baire category. However, it does occur widely.

Theorem
For every set C ⊆ ω, there is an HTP-complete set W ≡T C.
It follows that every Turing degree d ≥ 0′ contains a set of the form
HTP(RW ).

Corollary

There exists a computable subring R ⊆ Q with HTP(R) ≡1 ∅′.

Of course, MDPR proved this in 1970, for R = Z specifically. But our
proof will be much simpler than theirs!
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One useful polynomial
Define f (X ,Y , . . .) = (X 2 + Y 2 − 1)2 + (“ X > 0 ”)2 + (“ Y > 0 ”)2.

Solutions to f = 0 correspond to nonzero pairs (a
c ,

b
c ) with a2 + b2 = c2.

If 2 | c, then a2 + b2 ≡ 0 mod 4, so a2 ≡ b2 ≡ 0 mod 4, so a, b, and c
had a common factor of 2.
If an odd prime p divides c, then a2 ≡ −b2 mod p, and so −1 is a
square modulo p. Hence p ≡ 1 mod 4.

But if p ≡ 1 mod 4, then p = m2 + n2 for some m,n ∈ Z, and then(
m2 − n2

p

)2

+

(
2mn

p

)2

=
(m4 − 2m2n2 + n4) + 4m2n2

p2

=
(m2 + n2)2

p2 = 1.

So f ∈ HTP(RW ) ⇐⇒ W contains some p ≡ 1 mod 4.
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Many useful polynomials (joint with Ken Kramer)
The f (X ,Y ) above is useful, but it is only one polynomial, and can
code only one bit of information in HTP(RW ). We need more:

Lemma (Kramer)

For an odd prime q, let fq(X ,Y ) = X 2 + qY 2 − 1 (modified to make
Y > 0). Then in every solution (a

c ,
b
c ) ∈ Q2 to fq = 0, all prime factors p

of c satisfy (−q
p ) = 1, i.e., −q is a square mod p.

Conversely, for any such p, Z[ 1
p ] contains a nontrivial solution to fq = 0.

Definition

The q-appropriate primes p are those for which (−q
p ) = 1.

So q-appropriateness is decidable uniformly in q. Asymptotically, just
half of the primes are q-appropriate. E.g., when q ≡ 3 mod 4,(

−q
p

)
=

(
q
p

)
·
(
−1
p

)
=

(
p
q

)
.
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Many useful polynomials (joint with Ken Kramer)
The f (X ,Y ) above is useful, but it is only one polynomial, and can
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Lemma (Kramer)
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Coding C ′ into HTP(RW )

For an arbitrary C-oracle, we build W ≤T C with C′ ≤1 HTP(RW ).
Since W ′ ≤1 C′, this W will be HTP-complete.

Write C′ = {e0,e1,e2, . . .} ⊆ N. We build W ⊆ P in stages. At stage s,
to code that es ∈ C′, we wish to make the polynomial fqes

lie in
HTP(RW ), which requires putting a qes -appropriate prime p into Ws+1.
Choose p > max(Ws) such that, for every j ≤ s with j 6= es, p is NOT
qj -appropriate.

Enumerating W in order makes W ≤T C. (Also C′ ≤1 HTP(RW ) will
make C ≤T W .) The second condition tries to ensure, for those j /∈ C′,
that no qj -appropriate prime ever enters W . From stage j onwards, it
succeeds. But what if some qj -appropriate prime had already entered
W before that?
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Why does this work?
Here are the necessary lemmas for the construction to succeed.

Lemma (Shlapentokh, or Koenigsmann, following J. Robinson)

For each finite set S0 ⊆ P, the semilocal subring Z[S0
−1

] is diophantine
in Q, and its diophantine definition there is uniform in S0.

This allows us to ask HTP(RW ) whether RW contains a solution to fqj

that does NOT require inverting any of the primes that had already
entered W by stage j .

Lemma
For every finite set S0 ⊆ P and every prime q /∈ S0, there exist infinitely
many primes that are q-appropriate but (for all q′ ∈ S0) not
q′-appropriate.

Thus we can always find a prime satisfying the two conditions.
Recall: p is q-appropriate iff −q is a square modulo p.
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HTP and Turing reducibility

This result also shows how HTP can fail to preserve Turing reducibility,
and can even reverse it. For a c.e. set W of non-low degree, we will
have HTP(RW ) ≤T ∅′, because HTP is an enumeration operator. But
there will be a non-low set C <T W , and a V ≡T C with
HTP(RV ) ≡1 C′ >T ∅′.

Thus V <T W , yet HTP(RW ) <T HTP(RV ).

(This was the original joint work with Ken Kramer.)
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Analogies between operators
In the foregoing construction we used the boundary rings of the
polynomials fq.

Definition
For a pseudojump operator E and an x ∈ ω, a set W lies in the
boundary for x if we have x /∈ E(W ) but, for every σ vW , some τ A σ
has x ∈ E(τ−1(1)). That is, no finite portion of W rules out the
possibility that x might yet lie in E(W ).

The E-generic sets are those that (∀x) do not lie in the boundary for x .

For HTP, a ring in which no q-appropriate primes are inverted is a
boundary ring for fq. However, the set of all such rings has measure 0.

Open Question
What is the measure of the set of HTP-generic rings? Does there exist
a polynomial f whose boundary rings form a set of positive measure?
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Boundary sets
For the jump operator, one readily builds a functional Φe for which
{boundary sets for e under the jump} has measure > 1− ε:

ΦA
e (n) =

{
0, if (∃m > − log2(ε)) {m + 1,m + 2, . . . ,2m} ⊆ A;
↑, otherwise.

This Φe also gives an enumeration operator with boundary sets of
arbitrarily large measure < 1. But what about the HTP operator?

If HTP has large boundary sets, there is more opportunity to code
undecidable information, making HTP(RW ) >T W ⊕ HTP(Q).
If all HTP boundary sets have measure 0, then measure-1-many
W are HTP-generic, with HTP(RW ) ≡T HTP(Q)⊕W , and

HTP(Q) ≥T C ⇐⇒ µ({W : HTP(RW ) ≥T C}) > 0.

If all HTP boundary sets have measure 0, then there is no
existential definition of Z in the field Q. (Miller, 2017.)
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