Hilbert's Tenth Problem for Subrings of the Rational Numbers

Russell Miller

Queens College & CUNY Graduate Center

Workshop on Digitalization & Computable Models Mathematical Center in Akademgorodok (remote) 20 July 2020

(Partially joint work with Ken Kramer.)

HTP: Hilbert's Tenth Problem

Definition

For a ring R, Hilbert's Tenth Problem for R is the set

$$HTP(R) = \{f \in R[X_0, X_1, \ldots] : (\exists \vec{a} \in R^{<\omega}) \ f(a_0, \ldots, a_n) = 0\}$$

of all polynomials (in several variables) with solutions in R.

So HTP(R) is computably enumerable from the atomic diagram $\Delta(R)$.

HTP: Hilbert's Tenth Problem

Definition

For a ring R, Hilbert's Tenth Problem for R is the set

 $HTP(R) = \{ f \in R[X_0, X_1, \ldots] : (\exists \vec{a} \in R^{<\omega}) \ f(a_0, \ldots, a_n) = 0 \}$

of all polynomials (in several variables) with solutions in R.

So HTP(R) is computably enumerable from the atomic diagram $\Delta(R)$.

Hilbert's original formulation in 1900 demanded a decision procedure for $HTP(\mathbb{Z})$.

Theorem (Matiyasevich-Davis-Putnam-Robinson, 1970) $HTP(\mathbb{Z})$ is undecidable: indeed, $HTP(\mathbb{Z}) \equiv_1 \emptyset'$.

MDPR showed that \emptyset' is *diophantine* in \mathbb{Z} , i.e., \exists -definable there.

Theorem (Booker, March 2019)

 $(X_1^3 + X_2^3 + X_3^3 - 33)$ lies in $HTP(\mathbb{Z})$:

Theorem (Booker, March 2019)

 $(X_1^3 + X_2^3 + X_3^3 - 33)$ lies in $HTP(\mathbb{Z})$: (8,866,128,975,287,528)³ + (-8,778,405,442,862,239)³ + (-2,736,111,468,807,040)³ = 33.

Theorem (Booker, March 2019)

 $(X_1^3 + X_2^3 + X_3^3 - 33)$ lies in $HTP(\mathbb{Z})$: (8,866,128,975,287,528)³ + (-8,778,405,442,862,239)³ + (-2,736,111,468,807,040)³ = 33.

Theorem (Booker-Sutherland, Sept. 2019)

$$(X_1^3 + X_2^3 + X_3^3 - 42)$$
 lies in $HTP(\mathbb{Z})$:

Theorem (Booker, March 2019)

 $(X_1^3 + X_2^3 + X_3^3 - 33)$ lies in $HTP(\mathbb{Z})$: (8,866,128,975,287,528)³ + (-8,778,405,442,862,239)³ + (-2,736,111,468,807,040)³ = 33.

Theorem (Booker-Sutherland, Sept. 2019)

 $(X_1^3 + X_2^3 + X_3^3 - 42)$ lies in $HTP(\mathbb{Z})$: (-80,538,738,812,075,974)³ + (80,435,758,145,817,515)³ + (12,602,123,297,335,631)³ = 42.

Theorem (Booker, March 2019)

 $(X_1^3 + X_2^3 + X_3^3 - 33)$ lies in $HTP(\mathbb{Z})$: (8,866,128,975,287,528)³ + (-8,778,405,442,862,239)³ + (-2,736,111,468,807,040)³ = 33.

Theorem (Booker-Sutherland, Sept. 2019)

$$(X_1^3 + X_2^3 + X_3^3 - 42)$$
 lies in $HTP(\mathbb{Z})$:
(-80,538,738,812,075,974)³ + (80,435,758,145,817,515)³ + (12,602,123,297,335,631)³ = 42.

Conjecture

$$(X_1^3+X_2^3+X_3^3-k)\in HTP(\mathbb{Z})\iff k\not\equiv\pm 4 \mod 9.$$

This has been proven for all $k \le 100$ in ω . \implies holds for all k, since the only cubes in $\mathbb{Z}/(9)$ are 0 and ± 1 .

Russell Miller (CUNY)

Hilbert's Tenth Problem for ${\mathbb Q}$

Major Open Problem

The Turing degree of $HTP(\mathbb{Q})$ is unknown! All Σ_1 degrees are possible.

Hilbert's Tenth Problem for ${\mathbb Q}$

Major Open Problem

The Turing degree of $HTP(\mathbb{Q})$ is unknown! All Σ_1 degrees are possible.

We always knew that $HTP(\mathbb{Q}) \leq_1 HTP(\mathbb{Z})$:

$$f(\vec{X}) \in HTP(\mathbb{Q}) \iff (\exists \vec{y}, z \in \mathbb{Z}) \left[f\left(\frac{y_1}{z}, \dots, \frac{y_n}{z}\right) = 0 \& z > 0 \right]$$
$$\iff \left(Z^d \cdot f\left(\frac{Y_1}{z}, \dots, \frac{Y_n}{z}\right) \right)^2 + \left(Z - \left(1 + \sum_{i=1}^4 V_i^2\right) \right)^2 \in HTP(\mathbb{Z}).$$

So the undecidability of $HTP(\mathbb{Z})$ focused attention on $HTP(\mathbb{Q})$.

Hilbert's Tenth Problem for ${\mathbb Q}$

Major Open Problem

The Turing degree of $HTP(\mathbb{Q})$ is unknown! All Σ_1 degrees are possible.

We always knew that $HTP(\mathbb{Q}) \leq_1 HTP(\mathbb{Z})$:

$$f(\vec{X}) \in HTP(\mathbb{Q}) \iff (\exists \vec{y}, z \in \mathbb{Z}) \left[f\left(\frac{y_1}{z}, \dots, \frac{y_n}{z}\right) = 0 \& z > 0 \right]$$

$$\iff \left(Z^{d} \cdot f\left(\frac{Y_{1}}{Z}, \ldots, \frac{Y_{n}}{Z}\right)\right)^{2} + \left(Z - \left(1 + \sum_{i=1}^{4} V_{i}^{2}\right)\right) \in \mathsf{HTP}(\mathbb{Z}).$$

So the undecidability of $HTP(\mathbb{Z})$ focused attention on $HTP(\mathbb{Q})$.

Proposition

For every subring $R \subseteq \mathbb{Q}$, we have $HTP(\mathbb{Q}) \leq_1 HTP(R)$, always via the same 1-reduction as shown above.

When is $HTP(R) \equiv_T HTP(\mathbb{Q})$?

Lemma (Shlapentokh, or Koenigsmann, following J. Robinson)

For each finite set $S_0 \subseteq \mathbb{P}$ of primes, the semilocal ring $R = \mathbb{Z}[\overline{S_0}^{-1}]$ satisfies $HTP(R) \equiv_1 HTP(\mathbb{Q})$, uniformly in S_0 .

Here $R = \mathbb{Z}[W^{-1}]$, with $W = \mathbb{P} - S_0$ cofinite. But we can do better....

When is $HTP(R) \equiv_T HTP(\mathbb{Q})$?

Lemma (Shlapentokh, or Koenigsmann, following J. Robinson)

For each finite set $S_0 \subseteq \mathbb{P}$ of primes, the semilocal ring $R = \mathbb{Z}[\overline{S_0}^{-1}]$ satisfies $HTP(R) \equiv_1 HTP(\mathbb{Q})$, uniformly in S_0 .

Here $R = \mathbb{Z}[W^{-1}]$, with $W = \mathbb{P} - S_0$ cofinite. But we can do better....

Theorem (Eisenträger-M.-Park-Shlapentokh, 2017)

For every c.e. set *C* with $HTP(\mathbb{Q}) \leq_T C$, there is a computably presentable ring $R_W = \mathbb{Z}[W^{-1}]$ such that $HTP(R_W) \equiv_T C$ and the c.e. set $W \subseteq \mathbb{P}$ has lower density 0 in \mathbb{P} .

This means that $\liminf_{n\to\infty} \frac{|W \cap \{p_0,...,p_n\}|}{n+1} = 0$. It is open whether this theorem can be strengthened to make the limsup equal 0 as well.

The construction by Eisenträger-M.-Park-Shlapentokh is purely computably theoretic: a finite-injury argument, mixed with coding of *C*.

HTP-generic subrings R_W of \mathbb{Q}

We satisfy, for each $f = f_0, f_1, f_2, ... \in \mathbb{Z}[X_1, X_2, ...],$

 $\mathcal{P}_f: f \notin HTP(R_W) \iff (\exists \text{ finite } S_f \subseteq \overline{W}) f \notin HTP(R_{\mathbb{P}-S_f}).$

At each stage *s*, some finite set $S_{f,s}$ of primes is *forbidden* to \mathcal{P}_f . Each \mathcal{P}_f tries to find a rational solution $f(\vec{x}) = 0$ whose denominators are not divisible by the primes in $S_{f,s}$. If it finds one, it enumerates into *W* the prime factors of those denominators, so R_W contains this solution. The set $S_{f,s}$ is large enough to make the lower density approach 0, and changes only when \mathcal{P}_f is injured by a higher-priority action.

The resulting R_W is *HTP-generic*: for every *f*, either:

• $f \in HTP(R_W)$, so we find a solution by enumerating R_W ;

• or some finite $S_f = \lim_s S_{f,s}$ has $S_f \cap W = \emptyset$ and $f \notin HTP(R_{\mathbb{P}-S_f})$.

So, with an $HTP(\mathbb{Q})$ -oracle, we can decide whether $f_0 \in HTP(R_W)$; then determine S_{f_1} from that and decide whether $f_1 \in HTP(R_W)$, etc.

Subrings of \mathbb{Q}

A subring *R* of \mathbb{Q} is characterized by the set of primes *p* such that $\frac{1}{p} \in R$. For each set *W* of primes, set

$$R_W = \mathbb{Z}[W^{-1}] = \left\{ \frac{m}{n} \in \mathbb{Q} : \text{ all prime factors of } n \text{ lie in } W \right\},$$

the subring generated by inverting all the primes in W.

We often move effectively between subsets *V* of ω and $W = \{p_n : n \in V\} \subseteq \mathbb{P}$, the set of primes which *V* describes.

Notice that $R_w = \mathbb{Z}[W^{-1}]$ is computably presentable iff W is c.e., while R_W is a computable subring of \mathbb{Q} iff W is computable.

For $R \subseteq \mathbb{Q}$ we will treat $\{f \in \mathbb{Z}[\vec{X}] : (\exists \vec{x} \in R^{<\omega}) f(\vec{x}) = 0\}$ as HTP(R).

Subrings of Q as paths through a tree

In the signature of rings, the natural topology on the space of all subrings of \mathbb{Q} is the Scott topology. In the extended signature with a unary predicate for invertibility, it is the Cantor topology. Either way, we have Lebesgue measure and also Baire category on the space.

HTP as an operator

HTP maps each subset $W \subseteq \mathbb{P}$ of the primes to $HTP(R_W)$, viewed as a subset of ω by coding. The most obvious analogy is between *HTP* and the jump operator $W \mapsto W'$. However, *HTP* is an *enumeration operator* : given any enumeration of W, it can enumerate $HTP(R_W)$, uniformly and effectively. The jump is not an enumeration operator.

HTP as an operator

HTP maps each subset $W \subseteq \mathbb{P}$ of the primes to $HTP(R_W)$, viewed as a subset of ω by coding. The most obvious analogy is between *HTP* and the jump operator $W \mapsto W'$. However, *HTP* is an *enumeration operator* : given any enumeration of W, it can enumerate $HTP(R_W)$, uniformly and effectively. The jump is not an enumeration operator.

For an enumeration operator *E*, each set *A* can enumerate *A'*, hence can enumerate E(A'). Therefore E(A') is c.e. in *A*:

 $E(A') \leq_1 A',$

so all sets of the form W = A' have $E(W) \leq_T W <_T W'$. In particular, when W = A', we have $HTP(R_W) \equiv_1 W$. So the HTP operator does not always increase complexity.

 $(W \leq_1 HTP(R_W) \text{ always holds: } p \in W \iff (pX - 1) \in HTP(R_W).)$

How much difference between W' and $HTP(R_W)$?

Not many sets are jumps, but there is a widespread subtler difference:

Proposition

Let *E* be an enumeration operator. Then, for every relatively c.e. set *W*, we have $W' \leq_1 E(W)$.

Proof: *Relatively c.e.* means that there is a set $V <_T W$ such that W is V-c.e. Now E(W) must also be V-c.e., so $E(W) \leq_1 V'$. However, with $W \leq_T V$, we have $W' \leq_1 V'$, and thus $W' \leq_1 E(W)$.

How much difference between W' and $HTP(R_W)$?

Not many sets are jumps, but there is a widespread subtler difference:

Proposition

Let *E* be an enumeration operator. Then, for every relatively c.e. set *W*, we have $W' \leq_1 E(W)$.

Proof: *Relatively c.e.* means that there is a set $V <_T W$ such that W is V-c.e. Now E(W) must also be V-c.e., so $E(W) \leq_1 V'$. However, with $W \not\leq_T V$, we have $W' \not\leq_1 V'$, and thus $W' \not\leq_1 E(W)$.

Theorem (Jockusch for category; Kurtz for measure)

The relatively c.e. sets are co-meager and have measure 1 in 2^{ω} .

Corollary (M, 2017)

For almost all subrings $R = R_W \subseteq \mathbb{Q}$, the MDPR result fails: $W' \not\leq_1 HTP(R)$, and the set W' is c.e. in R but not diophantine in R.

1-reductions vs. Turing reductions

We really want to compare W' and $HTP(R_W)$ under Turing reducibility. Then we could apply:

Theorem (M, 2016, 2020)

For any set $\mathcal{C} \subseteq \omega$ (such as \emptyset'), the following are equivalent:

• $HTP(\mathbb{Q}) \geq_T C.$

- **2** $HTP(R) \ge_T C$ for all subrings R of \mathbb{Q} .
- $HTP(R) \ge_T C$ for a non-meager set of subrings R.

Additionally, $HTP(\mathbb{Q})$ is low \iff a non-meager set of subrings R_W

all satisfy $(HTP(R_W))' \leq_T W'$.

It is open whether a similar equivalence holds for Lebesgue measure.

1-reductions vs. Turing reductions

We really want to compare W' and $HTP(R_W)$ under Turing reducibility. Then we could apply:

Theorem (M, 2016, 2020)

For any set $C \subseteq \omega$ (such as \emptyset'), the following are equivalent:

• $HTP(\mathbb{Q}) \geq_T C.$

- **2** $HTP(R) \ge_T C$ for all subrings R of \mathbb{Q} .
- $HTP(R) \ge_T C$ for a non-meager set of subrings R.

Additionally, $HTP(\mathbb{Q})$ is low \iff a non-meager set of subrings R_W all satisfy $(HTP(R_W))' \leq_T W'$.

It is open whether a similar equivalence holds for Lebesgue measure.

Almost all sets *W* are *generalized low*₁, meaning that $W' \equiv_T \emptyset' \oplus W$. So the following equivalence holds on a comeager set of measure 1:

$$\emptyset' \leq_T HTP(R_W) \iff W' \leq_T HTP(R_W).$$

Trying to compute the jump

Generalized lowness shows that it is possible for an enumeration operator to compute the jump in most cases:

Let $E(W) = \emptyset' \oplus W$. Then $W' \leq_T E(W)$ on a comeager set, and on a set of measure 1, although of course it is far less common to have $W' \leq_1 E(W)$.

Trying to compute the jump

Generalized lowness shows that it is possible for an enumeration operator to compute the jump in most cases:

Let $E(W) = \emptyset' \oplus W$. Then $W' \leq_T E(W)$ on a comeager set, and on a set of measure 1, although of course it is far less common to have $W' \leq_1 E(W)$.

Possibly this could hold of the HTP operator, but it cannot be uniform:

Theorem

For each enumeration operator E and each Turing functional Ψ , the set

$$\{\boldsymbol{W}\subseteq\boldsymbol{\omega}:\boldsymbol{W}'\neq\boldsymbol{\Psi}^{\boldsymbol{E}(\boldsymbol{W})}\}$$

has positive measure. Thus it is impossible for E(W) to compute W' uniformly on a set of measure 1.

Proving the theorem

Fix *e* such that $e \in A'$ iff *A* omits a long interval:

$$\Phi_{e}^{A}(n) = \begin{cases} 0, & \text{if } (\exists m > 0) \ \{m, m + 1, \dots, 2m\} \cap A = \emptyset; \\ \uparrow, & \text{otherwise.} \end{cases}$$

At least half of all A have $e \notin A'$, so there is some σ such that

$$\mu(\{A \subseteq \omega : \sigma \sqsubseteq E(A) \And \Psi^{\sigma}(e) \downarrow = 0\}) > 0.$$

Fix a finite S_0 with $\sigma \sqsubseteq E(S_0)$ for which $\mathcal{W} = \{A : S_0 \subseteq A \& \sigma \sqsubseteq E(A)\}$ has measure > 0. Then fix an $m > \max(S_0 \cup \{0\})$. Set

$$\mathcal{V} = \{ B \in 2^{\omega} : (\exists A \in \mathcal{W}) \ B = A - \{m, m+1, \ldots, 2m\} \}.$$

Now $\mu(\mathcal{V}) \geq \frac{\mu(\mathcal{W})}{2^{m+1}} > 0$, and $\Psi^{E(B)}(e) = \Psi^{\sigma}(e) \downarrow = 0 \neq B'(e)$ for $B \in \mathcal{V}$.

HTP-complete sets

Definition

A set W is *HTP-complete* if $W' \leq_1 HTP(R_W)$. (In particular, this holds if W' is diophantine in R_W .)

We have seen that HTP-completeness is uncommon, in terms of Lebesgue measure and Baire category. However, it does occur widely.

Theorem

For every set $C \subseteq \omega$, there is an *HTP*-complete set $W \equiv_{\mathcal{T}} C$. It follows that every Turing degree $d \ge 0'$ contains a set of the form $HTP(R_W)$.

HTP-complete sets

Definition

A set W is *HTP-complete* if $W' \leq_1 HTP(R_W)$. (In particular, this holds if W' is diophantine in R_W .)

We have seen that HTP-completeness is uncommon, in terms of Lebesgue measure and Baire category. However, it does occur widely.

Theorem

For every set $C \subseteq \omega$, there is an *HTP*-complete set $W \equiv_{\mathcal{T}} C$. It follows that every Turing degree $d \ge 0'$ contains a set of the form $HTP(R_W)$.

Corollary

There exists a computable subring $R \subseteq \mathbb{Q}$ with $HTP(R) \equiv_1 \emptyset'$.

Of course, MDPR proved this in 1970, for $R = \mathbb{Z}$ specifically. But our proof will be much simpler than theirs!

Russell Miller (CUNY)

HTP for Subrings of Q

One useful polynomial

Define $f(X, Y, ...) = (X^2 + Y^2 - 1)^2 + ("X > 0")^2 + ("Y > 0")^2$.

Solutions to f = 0 correspond to nonzero pairs $(\frac{a}{c}, \frac{b}{c})$ with $a^2 + b^2 = c^2$.

If 2 | c, then $a^2 + b^2 \equiv 0 \mod 4$, so $a^2 \equiv b^2 \equiv 0 \mod 4$, so a, b, and c had a common factor of 2. If an odd prime p divides c, then $a^2 \equiv -b^2 \mod p$, and so -1 is a square modulo p. Hence $p \equiv 1 \mod 4$.

But if $p \equiv 1 \mod 4$, then $p = m^2 + n^2$ for some $m, n \in \mathbb{Z}$, and then

$$\left(\frac{m^2 - n^2}{p}\right)^2 + \left(\frac{2mn}{p}\right)^2 = \frac{(m^4 - 2m^2n^2 + n^4) + 4m^2n^2}{p^2}$$
$$= \frac{(m^2 + n^2)^2}{p^2} = 1.$$

So $f \in HTP(R_W) \iff W$ contains some $p \equiv 1 \mod 4$.

Many useful polynomials (joint with Ken Kramer)

The f(X, Y) above is useful, but it is only one polynomial, and can code only one bit of information in $HTP(R_W)$. We need more:

Lemma (Kramer)

For an odd prime q, let $f_q(X, Y) = X^2 + qY^2 - 1$ (modified to make Y > 0). Then in every solution $(\frac{a}{c}, \frac{b}{c}) \in \mathbb{Q}^2$ to $f_q = 0$, all prime factors p of c satisfy $(\frac{-q}{p}) = 1$, i.e., -q is a square mod p.

Many useful polynomials (joint with Ken Kramer)

The f(X, Y) above is useful, but it is only one polynomial, and can code only one bit of information in $HTP(R_W)$. We need more:

Lemma (Kramer)

For an odd prime q, let $f_q(X, Y) = X^2 + qY^2 - 1$ (modified to make Y > 0). Then in every solution $(\frac{a}{c}, \frac{b}{c}) \in \mathbb{Q}^2$ to $f_q = 0$, all prime factors p of c satisfy $(\frac{-q}{p}) = 1$, i.e., -q is a square mod p. Conversely, for any such p, $\mathbb{Z}[\frac{1}{p}]$ contains a nontrivial solution to $f_q = 0$.

Definition

The *q*-appropriate primes *p* are those for which $\left(\frac{-q}{p}\right) = 1$.

So *q*-appropriateness is decidable uniformly in *q*. Asymptotically, just half of the primes are *q*-appropriate. E.g., when $q \equiv 3 \mod 4$,

$$\left(\frac{-q}{p}\right) = \left(\frac{q}{p}\right) \cdot \left(\frac{-1}{p}\right) = \left(\frac{p}{q}\right).$$

Coding C' into $HTP(R_W)$

For an arbitrary *C*-oracle, we build $W \leq_T C$ with $C' \leq_1 HTP(R_W)$. Since $W' \leq_1 C'$, this *W* will be *HTP*-complete.

Write $C' = \{e_0, e_1, e_2, \ldots\} \subseteq \mathbb{N}$. We build $W \subseteq \mathbb{P}$ in stages. At stage s, to code that $e_s \in C'$, we wish to make the polynomial $f_{q_{e_s}}$ lie in $HTP(R_W)$, which requires putting a q_{e_s} -appropriate prime p into W_{s+1} . Choose $p > \max(W_s)$ such that, for every $j \leq s$ with $j \neq e_s$, p is NOT q_j -appropriate.

Enumerating *W* in order makes $W \leq_T C$. (Also $C' \leq_1 HTP(R_W)$ will make $C \leq_T W$.) The second condition tries to ensure, for those $j \notin C'$, that no q_j -appropriate prime ever enters *W*. From stage *j* onwards, it succeeds. But what if some q_j -appropriate prime had already entered *W* before that?

Why does this work?

Here are the necessary lemmas for the construction to succeed.

Lemma (Shlapentokh, or Koenigsmann, following J. Robinson)

For each finite set $S_0 \subseteq \mathbb{P}$, the semilocal subring $\mathbb{Z}[\overline{S_0}^{-1}]$ is diophantine in \mathbb{Q} , and its diophantine definition there is uniform in S_0 .

This allows us to ask $HTP(R_W)$ whether R_W contains a solution to f_{q_j} that does NOT require inverting any of the primes that had already entered W by stage j.

Lemma

For every finite set $S_0 \subseteq \mathbb{P}$ and every prime $q \notin S_0$, there exist infinitely many primes that are *q*-appropriate but (for all $q' \in S_0$) not q'-appropriate.

Thus we can always find a prime satisfying the two conditions. Recall: p is q-appropriate iff -q is a square modulo p.

HTP and Turing reducibility

This result also shows how *HTP* can fail to preserve Turing reducibility, and can even reverse it. For a c.e. set *W* of non-low degree, we will have $HTP(R_W) \leq_T \emptyset'$, because *HTP* is an enumeration operator. But there will be a non-low set $C <_T W$, and a $V \equiv_T C$ with $HTP(R_V) \equiv_1 C' >_T \emptyset'$.

```
Thus V <_T W, yet HTP(R_W) <_T HTP(R_V).
```

(This was the original joint work with Ken Kramer.)

Analogies between operators

In the foregoing construction we used the *boundary rings* of the polynomials f_q .

Definition

For a pseudojump operator *E* and an $x \in \omega$, a set *W* lies in the *boundary for x* if we have $x \notin E(W)$ but, for every $\sigma \sqsubseteq W$, some $\tau \sqsupset \sigma$ has $x \in E(\tau^{-1}(1))$. That is, no finite portion of *W* rules out the possibility that *x* might yet lie in E(W).

The *E*-generic sets are those that $(\forall x)$ do not lie in the boundary for *x*.

For *HTP*, a ring in which no *q*-appropriate primes are inverted is a boundary ring for f_q . However, the set of all such rings has measure 0.

Analogies between operators

In the foregoing construction we used the *boundary rings* of the polynomials f_q .

Definition

For a pseudojump operator *E* and an $x \in \omega$, a set *W* lies in the *boundary for x* if we have $x \notin E(W)$ but, for every $\sigma \sqsubseteq W$, some $\tau \sqsupset \sigma$ has $x \in E(\tau^{-1}(1))$. That is, no finite portion of *W* rules out the possibility that *x* might yet lie in E(W).

The *E*-generic sets are those that $(\forall x)$ do not lie in the boundary for *x*.

For *HTP*, a ring in which no *q*-appropriate primes are inverted is a boundary ring for f_q . However, the set of all such rings has measure 0.

Open Question

What is the measure of the set of HTP-generic rings? Does there exist a polynomial *f* whose boundary rings form a set of positive measure?

Boundary sets

For the jump operator, one readily builds a functional Φ_e for which {boundary sets for *e* under the jump} has measure > 1 - ϵ :

$$\Phi_e^{\mathcal{A}}(n) = \begin{cases} 0, & \text{if } (\exists m > -\log_2(\epsilon)) \{m+1, m+2, \dots, 2m\} \subseteq \mathcal{A}; \\ \uparrow, & \text{otherwise.} \end{cases}$$

This Φ_e also gives an enumeration operator with boundary sets of arbitrarily large measure < 1. But what about the *HTP* operator?

Boundary sets

For the jump operator, one readily builds a functional Φ_e for which {boundary sets for *e* under the jump} has measure > 1 - ϵ :

$$\Phi_{e}^{A}(n) = \begin{cases} 0, & \text{if } (\exists m > -\log_{2}(\epsilon)) \{m+1, m+2, \dots, 2m\} \subseteq A; \\ \uparrow, & \text{otherwise.} \end{cases}$$

This Φ_e also gives an enumeration operator with boundary sets of arbitrarily large measure < 1. But what about the *HTP* operator?

- If *HTP* has large boundary sets, there is more opportunity to code undecidable information, making *HTP*(*R_W*) >_T *W* ⊕ *HTP*(ℚ).
- If all *HTP* boundary sets have measure 0, then measure-1-many W are *HTP*-generic, with $HTP(R_W) \equiv_T HTP(\mathbb{Q}) \oplus W$, and

$$HTP(\mathbb{Q}) \geq_T C \iff \mu(\{W: HTP(R_W) \geq_T C\}) > 0.$$

If all *HTP* boundary sets have measure 0, then there is no existential definition of Z in the field Q. (Miller, 2017.)