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Dehn’s three problems

Example

Let G = 〈a,b | aba−1b−1〉

∼= Z2. Is a9b−6a6ba7 = 1?

Dehn 1911:
Word problem: Given 〈Σ | R〉, is x = 1?
Conjugacy problem: Given 〈Σ | R〉, is x conjugate to y?
Isomorphism problem: Is 〈Σ1 | R1〉 ∼= 〈Σ2 | R2〉?

Finitely-presented groups with incomputable word problem:
Novikov ’55, Boone ’57
Kharlampovich ’81: solvable group of derived length 3
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Word problem and representative system

Definition (Word problem as a set)
The word problem of a group G = 〈S〉 is W (G) = {w ∈ S<ω | w =G 1}.

Definition
A set X ⊆ S<ω is called a representative system for a group G = 〈S〉 if

1 For every g ∈ G, there is x ∈ X such that x =G g.
2 For any x , y ∈ X , x 6=G y .

Computable word problem⇔ computable representative system
Focus on finitely-generated groups with a computable
representative system
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Representative systems

Example
1 {anbm | n,m ∈ Z} is a representative system for Z2 = 〈a,b〉.

2 A representative system for Z2 = 〈a2,a3,b〉.
3 The Mal’cev basis of a nilpotent/polycyclic group induces a

representative system.

geodesic word: the shortest among all words representing the same
element

Goal: find “nice" geodesic representative systems
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Geodesic representative systems and rational growth

Example

{anbm | n,m ∈ Z} is a geodesic representative system of Z2 = 〈a,b〉

|g| = |anbm| = |n|+ |m|
r -sphere: Sr = {g | |g| = r}, has size 4r
growth series:

∑
|Sr |t r =

∑
4rt r = 4t

(1−t)2

Definition
We say a group G = 〈S〉 has rational growth if its growth series∑
|Sr |t r is a rational function.

A sequence satisfies a finite-depth recursion if and only if its
associated series is rational.
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Rational growth

Rational growth implies computable word problem

regular geodesic representative system implies rational growth

Theorem (Gromov ’81)
A finitely-generated group has growth function, i.e. s(r) = |Sr |, being
bounded above by a polynomial if and only if it is virtually-nilpotent.

s(r) is eventually quasi-polynomial iff G has rational growth

Theorem (Valiunas, ’19)
If G has rational growth, then Crαλr < |Sr | < Drαλr for some α ∈ N,
λ ∈ [1,∞), and 0 < C < D.
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Rational growth

Question
When does a group have rational growth?

Rational in all generating sets:
virtually-abelian groups (Benson ’83)
hyperbolic groups (Cannon ’84, Gromov)
many automatic groups (Cannon ’84, Thurston)
the Heisenberg group of dimension 3 (Duchin-Shapiro ’19)

Stoll ’96: The Heisenberg group of dimension 5 has rational
growth in some generating set, but not in some other.

Generating sets that admit rational growths are “better” than others.
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Main question

Question
Which groups have rational growth in some generating set?

abelian groups //

))

nilpotent groups // solvable groups

metabelian groups

55

metabelian: solvable with derived length 2

Theorem (Kharlampovich, ’81)
There is a solvable group with derived length 3 whose word problem is
not computable.
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HNN extensions

Brazil ’94 and Collins, Edjvet, Gill ’94: The solvable Baumslag-Solitar
groups have rational growth.

Sánchez, Shapiro ’18: The higher Baumslag-Solitar group, Zm∗g→g3 ,
has rational growth.

Theorem (Ho, Sánchez, in progress)
Any higher Baumslag-Solitar group has rational growth in the standard
generating set.
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Semidirect products

Parry ’07: Z2 oA Z with A =

[
0 −1
1 2k

]
has rational growth.

Putman ’06, Bregman ’18: Most Zn oA Z have finite-index subgroups
that have rational growths.

Theorem (Choi, Ho, Pengitore, in progress)

Z2 oA Z with A =

[
0 −1
1 2k + 1

]
has rational growth in the standard

generating set.

Conjecture

Every Z2 oA Z with A ∈ SL(2,Z) has rational growth in some
generating set.
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Every Z2 oA Z with A ∈ SL(2,Z) has rational growth in some
generating set.
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Example: solvable Baumslag-Solitar groups

BS(1,3) = 〈a, t | tat−1 = a3〉 = {ak | k = n
3e ,n ∈ Z,e ∈ ω}o Z

A geodesic representative system for 〈a〉 is
1 {ε,a±1,a±2}
2 {tdaxd t−1axd−1 t−1 · · · t−1ax0 |

d ≥ 1, xd 6= 0, |xd | ≤ 2, |xi | ≤ 1, (xd , xd−1) 6= (±1,∓1)}
The growth series for the subgroup 〈a〉 is

1 + 2(x + x2) + 2
∑
d≥1

x2d (x + 2x2 + 2x3)(1 + 2x)d−1.

Conjecture

Every Z2 oA Z with A ∈ SL(2,Z) has rational growth in some
generating set.
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Applications of geodesic representative system

Applications of the geodesic representative system of solvable
Baumslag-Solitar groups:

(Collins, Edjvet, Gill, ’94) computed explicit growth rates
(Elder, ’10) linear-time algorithm to find geodesic representative,
solving (bounded) geodesic length problem in linear time
(Ciobanu, Evetts, H., ’20) transcendency of conjugacy growth
(Taback, Walker, ’20) computed conjugacy curvature

Thank you!
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