Recent Results in Cohesive Powers

R. Dimitrov

Department of Mathematics and Philosophy, Western Illinois University

WDCM-2020 July 24, 2020

< ロ > < 同 > < 三 > < 三

Content

- Definitions
- Motivation: [Dimitrov, 2004, 2008, 2009] Cohesive powers used in structural theorems about $\mathcal{L}^*(V_{\infty})$.
- Recent Results:
- [Dimitrov, Harizanov, Miller, Mourad, 2014] Isomorphisms on non-standard fields and Ash's conjecture
- [Dimitrov, Harizanov, 2015]
 Orbits of maximal vector spaces
- [Dimitrov, Harizanov, Morozov, Shafer, A. Soskova, Vatev, 2019] Cohesive Powers of Linear Orders

Definitions from Computability Theory

- \mathcal{E} is the lattice of computably enumerable sets.
- \mathcal{E}^* is the lattice \mathcal{E} modulo finite sets.
- An infinite set C ⊂ ω is cohesive if for every c.e. set W either W ∩ C or W ∩ C is finite.
- A set *M* is *maximal* if *M* is c.e. and \overline{M} is cohesive.
- Theorem: [Friedberg 1958] There are maximal sets.
- B is quasimaximal if it is the intersection of finitely many $(n \ge 1)$ maximal sets.
- $\mathcal{E}^*(B,\uparrow)$ is isomorphic to the Boolean algebra \mathbf{B}_n .
- (Soare) If M_1 and M_2 are maximal sets then there is an automorphism g of \mathcal{E}^* such that $g(M_1) = M_2$
- (Soare) If Q_1 and Q_2 are rank-*n* quasimaximal sets, then there is an automorphism g of \mathcal{E}^* such that $g(Q_1) = Q_2$

→ Ξ →

The Lattice $\mathcal{L}(V_{\infty})$.

- V_{∞} is a \aleph_0 -dimensional vector space over a computable field F.
- The vectors in V_{∞} are finite sequences of elements of Q.
- If *I* is a set of vectors from V_∞, then cl(1) denotes the linear span of *I*.
- $V \subseteq V_{\infty}$ is computably enumerable if the set of vectors in V is c.e.
- The c.e. subspaces of V_{∞} form a lattice, denoted by $\mathcal{L}(V_{\infty})$.
- $V_1 \vee V_2 = cl(V_1 \cup V_2)$ and $V_1 \wedge V_2 = V_1 \cap V_2$.

A B A A B A

The Lattice $\mathcal{L}^*(V_\infty)$

- $V_1 = V_2$ if V_1 and V_2 differ by finite dimension.
- $\mathcal{L}^*(V_\infty)$ is $\mathcal{L}(V_\infty)/=^*$.
- Both $\mathcal{L}(V_\infty)$ and $\mathcal{L}^*(V_\infty)$ are modular nondistributive lattices.
- There are very few result about the structure of $\mathcal{L}^*(V_\infty)$.
- Conjecture: (Ash) The automorphisms of L^{*}(V_∞) are induced by computable semilinear transformations with finite dimensional kernels and co-finite dimensional images in V_∞.

(日) (周) (三) (三)

The map $Cl: \mathcal{E}^* \to \mathcal{L}^*(V_\infty)$

- Let A be a computable basis of V_{∞} and let B be a quasimaximal subset of A.
- Let V = cl(B).
- Identify \mathcal{E}^* with the lattice of c.e. subsets of A modulo $=^*$.
- $\mathcal{E}^*(B,\uparrow) \cong \mathbf{B_n}$
- Yet $\mathcal{L}^*(V,\uparrow)$ is not always isomorphic to B_n .

• • = • • = •

Characterization of $\mathcal{L}^*(V,\uparrow)$

Theorem(s): (Dimitrov 2004, 2008) Let *B* be a rank-n quasimaximal subset of a computable basis Ω of V_{∞} Then $\mathcal{L}^*(cl(B),\uparrow) \cong$

- (1) the Boolean algebra $\mathbf{B_n}$, or
- (2) the lattice L(n, Q_a) of all subspaces of an n-dimensional vector space over a certain extension Q_a (∏ Q) of the field Q, or
- (3) a finite product of lattices from (1) and (2).

Example 1: $type_{\Omega}(B) = ((1, 1, 1), (\mathbf{a}, \mathbf{b}, \mathbf{c})),$

- Then $\mathcal{L}^*(cl(B),\uparrow)\cong$
- the Boolean algebra B_3

→ Ξ →

Example 2: $type_{\Omega}(B_1) = (3, (\mathbf{a}))$, and $type_{\Omega}(B_2) = (3, (\mathbf{b}))$

- Assume $\mathbf{a} \neq \mathbf{b}$. Then $Q_{\mathbf{a}} \ncong Q_{\mathbf{b}}$
- (By the FTPG) $\mathcal{L}^*(cl(B_1),\uparrow) \ncong \mathcal{L}^*(cl(B_2),\uparrow)$

→ ∃ →

Cohesive powers of computable structures

Example: The cohesive power $\prod_{C} Q$ of Q over C

(1) Domain of $\prod_{C} Q$: $\{[\varphi]_{C} \mid \varphi : \omega \to Q \text{ is a partial computable function, and } C \subseteq^{*} dom(\varphi)\}$ Here $\varphi_{1} =_{C} \varphi_{2}$ iff $C \subseteq^{*} \{x : \varphi_{1}(x) \downarrow = \varphi_{2}(x) \downarrow\}$. $[\varphi]_{C}$ is the equivalence class of φ with respect to $=_{C}$

(2) Pointwise operations: $[\varphi_1]_C + [\varphi_2]_C = [\varphi_1 + \varphi_2]_C$ and $[\varphi_1]_C \cdot [\varphi_2]_C = [\varphi_1 \cdot \varphi_2]_C$

(3) $[0]_C$ and $[1]_C$ are the equivalence classes of the corresponding total constant functions.

イロト 不得下 イヨト イヨト 二日

[D2008]: Cohesive Powers of Computable Structures

Let \mathcal{A} be a computable structure for a computable language L and with domain A, and let $C \subset \omega$ be a cohesive set. The *cohesive power of* \mathcal{A} *over* C, denoted by $\prod_{C} \mathcal{A}$, is a structure \mathcal{B} for L with domain B such that the following holds.

- The set B = (D/ =_C), where D = {φ | φ : ω → A is a partial computable function, and C ⊆^{*} dom(φ)}.
 For φ₁, φ₂ ∈ D, we have φ₁ =_C φ₂ iff C ⊆^{*} {x : φ₁(x) ↓= φ₂(x) ↓}.
- If f ∈ L is an n-ary function symbol, then f^B is an n-ary function on B such that for every [φ₁],..., [φ_n] ∈ B, we have f^B([φ₁],..., [φ_n]) = [φ], where for every x ∈ A,

$$\varphi(x) \simeq f^{\mathcal{A}}(\varphi_1(x),\ldots,\varphi_n(x)).$$

Definition: Cohesive Powers of Computable Structures

 If P ∈ L is an m-ary predicate symbol, then P^B is an m-ary relation on B such that for every [φ₁],..., [φ_m] ∈ B,

 $P^{\mathcal{B}}([\varphi_1],\ldots,[\varphi_m]) \quad iff \quad C \subseteq^* \{x \in A \mid P^{\mathcal{A}}(\varphi_1(x),\ldots,\varphi_m(x))\}.$

If c ∈ L is a constant symbol, then c^B is the equivalence class of the (total) computable function on A with constant value c^A.

Related Notions

- Homomorphic images of the semiring of recursive functions have been studied as models of fragments of arithmetics by Fefferman, Scott, and Tennenbaum, Hirschfeld, Wheeler, Lerman, McLaughlin
- Let A be a specific r-cohesive set and let f and g be computable functions.
- Fefferman, Scott, and Tennenbaum defined a structure R/ ~_A
 For recursive f and g let f ~_A g if A ⊆* {n : f(n) = g(n)}
 The domain of R/ ~_A consists of the equivalence classes of recursive functions modulo ~_A

Theorem

(Fundamental theorem of cohesive powers)

- If τ(y₁,..., y_n) is a term in L and [φ₁],..., [φ_n] ∈ B, then [τ^B([φ₁],..., [φ_n])] is the equivalence class of a p.c. function such that τ^B([φ₁],..., [φ_n])(x) = τ^A(φ₁(x),..., φ_n(x)).
- If Φ(y₁,..., y_n) is a formula in L that is a boolean combination of Σ₁ and Π₁ formulas and [φ₁],..., [φ_n] ∈ B, then

 $\mathcal{B} \models \Phi([\varphi_1], \ldots, [\varphi_n]) \text{ iff } R \subseteq^* \{x : \mathcal{A} \models \Phi(\varphi_1(x), \ldots, \varphi_n(x))\}.$

If Φ is a Π₃ sentence in L, then B ⊨ Φ implies A ⊨ Φ.
If Φ is a Π₂ (or Σ₂) sentence in L, then B ⊨ Φ iff A ⊨ Φ.

イロト イポト イヨト イヨト 二日

Observations

If ${\mathcal A}$ is:

- (Dense) Linear Order (Without Endpoints),
- Ring,
- (Algebraically Closed) Field ,
- Lattice,
- (Atomless) Boolean Algebra,

then so is $\prod_{C} \mathcal{A}$.

- ∢ ∃ ▶

observations

Let $\mathcal{B} = \prod_{C} \mathcal{A}$ be the cohesive power of \mathcal{A} .

For $c \in A$ let $[\varphi_c] \in B$ be the equivalence class of φ_c such that $\varphi_c(i) = c$.

The map $d : A \to B$ such that $d(c) = [\varphi_c]$ is called the canonical embedding of A into B.

(日) (同) (三) (三)

Properties:

- If \mathcal{A} is finite then $\prod_{C} \mathcal{A} \cong \mathcal{A}$.
- if there is a computable permutation σ of ω such that $\sigma(C_1) =^* C_2$, then $\prod_{C_1} \mathcal{A} \cong \prod_{C_2} \mathcal{A}$.
- If $\mathcal{A}_1 \cong \mathcal{A}_2$ are computably isomorphic then $\prod_{C} \mathcal{A}_1 \cong \prod_{C} \mathcal{A}_2$.
- Let C be be co-r.e. Then for every $[\varphi] \in \prod_{C} \mathcal{A}$ there is a computable function f such that $[f] = [\varphi]$. $f(n) = \begin{cases} \varphi(n) & \text{if } \varphi(n) \downarrow \text{ first,} \\ a & \text{if n is enumerated into } \overline{C} \text{ first.} \end{cases}$

Limited Los for $\prod_{\overline{M}} \mathbb{N} \cong \mathcal{R} / \sim_{\overline{M}}$

- If *M* is a maximal set, then $\prod_{\overline{M}} \mathbb{N} \cong \mathcal{R} / \sim_{\overline{M}}$
- Feferman-Scott-Tennenbaum [1959]: \mathcal{R}/\sim_A is a model of only a fragment of First-Order-Arithmetics.

$$\mathsf{N} \models \forall \mathsf{x} \exists \mathsf{s} \forall \mathsf{e} \leq \mathsf{x} [\varphi_{\mathsf{e}}(\mathsf{x}) \downarrow \rightarrow \varphi_{\mathsf{e},\mathsf{s}}(\mathsf{x}) \downarrow]$$

but

$$\mathcal{R}/\sim_{\mathcal{A}}
ot=\forall x\exists s orall e\leq x[arphi_{e}(x)\downarrow
ightarrow arphi_{e,s}(x)\downarrow]$$

Results by J.Hirschfeld, Lerman, McLaughlin, Wheeler

Theorem: (Lerman 1975)

- (1) If $A_1 \equiv_m A_2$ are r-maximal sets, then $R/\overline{A_1} \cong R/\overline{A_2}$.
- (2) If M_1 and M_2 are maximal sets of different m-degrees, then $R/\overline{M_1}$ and $R/\overline{M_2}$ are not even elementary equivalent.

Theorem: (Hirschfeld and Wheeler 1975), (McLaughlin 1990)

• (3) R/\overline{M} is rigid

Dimitrov, Harizanov, Miller, Mourad 2014

• If
$$M_1 \equiv_m M_2$$
, then $\prod_{\overline{M_1}} \mathbb{Q} \cong \prod_{\overline{M_2}} \mathbb{Q}$.
• If $M_1 \not\equiv_m M_2$, then $\prod_{\overline{M_1}} \mathbb{Q} \not\equiv \prod_{\overline{M_2}} \mathbb{Q}$.

- $\ \, \underbrace{\prod_{\overline{M}} \mathbb{Z} \text{ is rigid.} }$
- $\, {\displaystyle \textcircled{\bullet}} \, \prod_{\overline{M}} {\displaystyle \mathbb{Q}} \, {\rm is \ rigid.}$
 - Q_a is the cohesive power of Q with respect to the complement of a maximal set with m-degree a
 - (4) Q_a is rigid.
 - (2) If $\mathbf{a} \neq \mathbf{b}$, then $Q_{\mathbf{a}}$ is not isomorphic to $Q_{\mathbf{b}}$.

Definability of Z in Q

- J. Robinson (1949): Z is $\forall \exists \forall$ definable in Q.
- Poonen (2009): Z is $\exists \forall$ definable in Q.
- Koenigsmann (2015): Z is \forall definable in Q.

- **4 ∃ ≻** 4

Definability of N in Q

- N is definable in Z :
 - $y \in N \Leftrightarrow \exists z_1 \dots \exists z_4 [y = z_1^2 + z_2^2 + z_3^2 + z_4^2]$
- Corollary: N definable in Q: $x \in N \Leftrightarrow \exists y_1 \dots \exists y_4 [\bigwedge_{i \leq 4} y_i \in Z \land x = y_1^2 + y_2^2 + y_3^2 + y_4^2]$

► < ∃ ►</p>

Dimitrov, Harizanov, Orbits of Maximal Vector Spaces, Algebra and Logic, 2015.

• There is an automorphism σ of $\mathcal{L}^*(V_\infty)$ such that $\sigma(cl(B_1)) = cl(B_2)$

iff

•
$$type(B_1) = type(B_2)$$
.

Example 1: $type_{\Omega}(B) = ((1, 1, 1), (\mathbf{a}, \mathbf{b}, \mathbf{c})),$

- Then $\mathcal{L}^*(cl(B),\uparrow)\cong$
- the Boolean algebra B_3

- ∢ ∃ ▶

Example 2: $type_{\Omega}(B_1) = (3, (\mathbf{a}))$, and $type_{\Omega}(B_2) = (3, (\mathbf{b}))$

- Assume $\mathbf{a} \neq \mathbf{b}$. Then $Q_{\mathbf{a}} \ncong Q_{\mathbf{b}}$
- (By the FTPG) $\mathcal{L}^*(cl(B_1),\uparrow) \ncong \mathcal{L}^*(cl(B_2),\uparrow)$

→ ∃ →

Main Results: Cohesive Powers of Linear Orders, Dimitrov, Harizanov, Morozov, Shafer, A. Soskova, Vatev, 2019

• If ${\mathcal A}$ is a computable presentation of the linear order ${\mathbb N}$ with a computable successor function, then

$$\prod_{C} \mathcal{A} \cong \mathbb{N} + \mathbb{Q} \times \mathbb{Z}.$$

• There is a computable presentation *B* of the linear order ℕ with a non-computable successor function, s.t.

$$\prod_{C} \mathcal{B} \cong \mathbb{N} + \mathbb{Q} \times \mathbb{Z}$$

Main Results: Cohesive Powers of Linear Orders, Dimitrov, Harizanov, Morozov, Shafer, A. Soskova, Vatev, 2019

 $\bullet\,$ There is a computable presentation ${\mathcal D}$ of the linear order ${\mathbb N},$ s.t.

$$\prod_{C} \mathcal{D} \not\cong \mathbb{N} + \mathbb{Q} \times \mathbb{Z}$$

In fact, there is an element of $\prod_{C} \mathcal{D}$ that has no immediate successor.

• Let φ be a \prod_3^0 sentence that states that every element has an immediate successor. Then

$$\mathbb{N} \vDash \varphi$$
 while $\prod_{C} \mathcal{D} \nvDash \varphi$

[1] Davis M., Matiyasevich Y., and Robinson J., Hilbert's tenth problem: Diophantine equations: positive aspects of a negative solution, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., vol. XXVIII, Northern Illinois Univ., De Kalb, III., 1974), Amer. Math. Soc., Providence, RI, pp. 323-378 (1976). [2] Dimitrov, R.D.: Quasimaximality and principal filters isomorphism between \mathcal{E}^* and $\mathcal{L}^*(V_{\infty})$, Arch. Math. Logic 43, pp. 415–424 (2004). [3] Dimitrov, R.D.: A class of Σ_3^0 modular lattices embeddable as principal filters in $\mathcal{L}^*(V_{\infty})$, Arch. Math. Logic 47, no. 2, pp. 111–132 (2008). [4] Dimitrov, R.D.: Cohesive powers of computable structures, Annuare De L'Universite De Sofia "St. Kliment Ohridski", Fac. Math and Inf., tome 99, pp. 193-201 (2009). [5a] Dimitrov, R., Harizanov, V., Miller, R., and Mourad, K.J.: Isomorphisms on non-standard fields and Ash's conjecture. Language, Life, Limits, Lecture Notes in Comput. Sci., 8493, pp. 143–152, Springer, Cham, (2014).

[5b] Dimitrov, R.D. and Harizanov, V.: Orbits of maximal vector spaces, Algebra and Logic 54 (2015), pp. 680–732 (Russian); (2016) pp. 440–477 (English translation).

[5c] Dimitrov, Harizanov, Morozov, Shafer, A. Soskova, Vatev, Cohesive Powers of Linear Orders, in CiE2019 proceedings.

[6] Feferman, S., Scott, D.S., and Tennenbaum, S.: Models of arithmetic through function rings, Notices Amer. Math. Soc. 6, 173. Abstract #556-31 (1959).

[7] Guichard, D.R.: Automorphisms of substructure lattices in recursive algebra, Ann. Pure Appl. Logic, vol. 25, no. 1, pp. 47–58 (1983).
[8] Hirschfeld, J.: Models of arithmetic and recursive functions, Israel Journal of Mathematics, vol. 20, no.2, pp. 111–126 (1975).

(日) (周) (三) (三)

[9] Hirschfeld, J. and Wheeler, W.: Forcing, arithmetic, division rings, Lecture Notes in Mathematics, vol. 454, Springer, Berlin (1975).
[10] Robinson, J.: Definability and decision problems in arithmetic, Journal of Symbolic Logic, vol. 14, no. 2, pp. 98–114 (1949).
[11] Koenigsmann, J.: Defining Z in Q, forthcoming in the Annals of Mathematics. (http://arxiv.org/abs/1011.3424)
[12] Lerman, M.: Recursive functions modulo co-*r*-maximal sets, Transactions of the American Mathematical Society, vol. 148, no. 2, pp. 429–444 (1970).

- 4 同 6 4 日 6 4 日 6

 [13] McLaughlin, T.: Some extension and rearrangement theorems for Nerode semirings, Zeitschr. f. math. Logic und Grundlagen d. Math., vol. 35, pp. 197–209 (1989).

[14] McLaughlin, T.: Sub-arithmetical ultrapowers: a survey, Annals of Pure and Applied Logic, vol. 49, no 2, pp. 143–191 (1990).

- [15] McLaughlin, T.: Δ_1 Ultrapowers are totally rigid, Archive for Mathematical Logic, vol. 46, pp. 379–384 (2007).
- [16] Metakides, G. and Nerode, A.: Recursively enumerable vector spaces, Annals of Mathematical Logic, vol. 11, pp. 147–171 (1977).
- [17] Robinson, R.: Arithmetical definitions in the ring of integers,

Proceedings of the American Mathematical Society, vol. 2, no. 2, pp. 279–284 (1951).

[18] Soare, R.I.: Recursively Enumerable Sets and Degrees. A Study of Computable Functions and Computably Generated Sets, Springer-Verlag, Berlin (1987).

イロト 不得下 イヨト イヨト 二日

Thank you

・ロト ・聞ト ・ヨト ・ヨト