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Kleene’s Recursion Theorem

Theorem (Kleene’1937)
For every computable function f there exists an n, called a fixed
point of f , such that

Φf (n) ' Φn.

(i.e. f has a fixed point n).

Here Φm the m-th partial computable function according to some
fixed effective listing of all such functions.
Let Wm denotes dom(Φm).



Completeness Criterion

Theorem (A.’1977)
Let A be a c.e. set such that ∅′ 6≤T A. Then any unary function
f ≤T A have a fixed-point:

(∃x)(Φf (x) ' Φx).

Corollary
Let A be a c.e. set. Then A is Turing complete if and only if there
is a unary function f ≤T A such that

(∀x)(Φx 6' Φf (x)).



Completeness Criterion

Theorem (A.’1977)
Let A be a c.e. set such that ∅′ 6≤T A. Then any unary function
f ≤T A have a fixed-point:

(∃x)(Φf (x) ' Φx).

Corollary
Let A be a c.e. set. Then A is Turing complete if and only if there
is a unary function f ≤T A such that
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First Generalization:
Almost fixed-points and Σ0

2-sets.

Let A ∼∗ B ↔ A ∪ F1 = B ∪ F2 for some finite sets F1 and F2.

Theorem.

a) for every f : ω 7→ ω, if f ≤T ∅′ then (∃e)[We ∼∗ Wf (e)];
b) for any set A ∈ Σ0

2,

∅′ ≤T A⇒ [A ≡T ∅′′ ⇔ (∃f ≤T A)(∀e)¬[We ∼∗ Wf (e)]];
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Second Generalization:
≡T -fixed-points and Σ0

3-sets.

Theorem.

a) for every f : ω 7→ ω, if f ≤T ∅′′ then (∃e)[We ≡T Wf (e)];
b) for any set A ∈ Σ0

3,

∅′′ ≤T A⇒ [A ≡T ∅′′′ ⇔ (∃f ≤T A)(∀e)¬[We ≡T Wf (e)]];



Third Generalization:
∼n+2-fixed-points and Σ0

n+3-sets.

Let A ∼n+2 B ↔ A(n) ≡T B(n).

Theorem.(Jockusch, Lerman, Soare and Solovay’1989)

a) for every f : ω 7→ ω and n ≥ 0,
f ≤T ∅(n+3) → (∃e)[We ∼n+3 Wf (e)];

b) for any set A ∈ Σ0
n+4,

∅(n+3) ≤T A⇒ [A ≡T ∅(n+4) ⇔ (∃f ≤T A)(∀e)¬[We ∼n+3 Wf (e)]];
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Fourth Generalization:
∼ω-fixed-points and Σ0

ω+1-sets.

Let A ∼ω B ↔ (∃n)[A(n) ≡T B(n)].

Theorem.(Jockusch, Lerman, Soare and Solovay’1989)

a) for every f : ω 7→ ω, if f ≤T ∅(ω) → (∃e)[We ∼ω Wf (e)];
b) for any set A ∈ Σ0

ω+1,

∅(ω) ≤T A⇒ [A ≡T ∅(ω+1) ⇔ (∃f ≤T A)(∀e)¬[We ∼ω Wf (e)]].



Fourth Generalization:
∼ω-fixed-points and Σ0

ω+1-sets.

Let A ∼ω B ↔ (∃n)[A(n) ≡T B(n)].

Theorem.(Jockusch, Lerman, Soare and Solovay’1989)

a) for every f : ω 7→ ω, if f ≤T ∅(ω) → (∃e)[We ∼ω Wf (e)];
b) for any set A ∈ Σ0

ω+1,

∅(ω) ≤T A⇒ [A ≡T ∅(ω+1) ⇔ (∃f ≤T A)(∀e)¬[We ∼ω Wf (e)]].



Further considerations

m−, tt−,wtt− reducibilities (Arslanov),
Q− reducibility (Baturshin)



Further considerations.

Definition.
Let R ⊂ ω × 2ω be a relation which generates a reflexive and
transitive relation ≤R :

A ≤R B 
 (∀x)[x ∈ A↔ R(h(x),B)]

for some computable function h.



Further considerations.

Theorem.
A c.e. set A is ≤R -complete if and only if there is a total function f
and computable functions a, b and h such that

f (x) =

{
a(x), if R(h(x),A);
b(x), if ¬R(h(x),A).

and {x : R(h(x),A)} c.e., (∀x)[Φx 6' Φf (x)].
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Uniformity of the Recursion Theorem

Let h(n, x) be a computable function of two arguments. Then for
every fixed n, λx .h(n, x) have a fixed point (by Kleene’s Recursion
Theorem): (∀n)(∃x)(Φx ' Φh(n,x)) .

Moreover, the recursion theorem holds uniformly:
(∃ computable f )(∀n)(Φf (n) ' Φh(n,f (n)))

Theorem (Kleene)
For every partial computable function ψ(n, x) there is a computable
function f (n) such that for all n

ψ(n, f (n)) ↓→ Φf (n) ' Φψ(n,f (n)).
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On the Uniformity of my Generalization

Theorem
Let A be a c.e. set such that ∅′ 6≤T A. Then any total unary
function f ≤T A have a fixed-point:

(∃x)(Φf (x) ' Φx).

Let the set A from the previous theorem is fixed. Then each total
function in the sequence ΦA

0 ,Φ
A
1 ,Φ

A
2 , . . . have a fixed point. It is

natural to ask: is there a computable function f (e) such that for
any fixed e f (e) is a fixed-point for the function ΦA

e (x), if it is total:

ΦA
e total → Φf (e) ' ΦΦA

e (f (e))
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Question:

A natural question arises:
whether this uniformity property holds for the above generalizations
of the Recursion Theorem. And if not, that is, if there is no
computable procedure for finding such fixed points, then in what
smallest degrees can such procedures be?

Sebastiaan Terwijn was the first who interested in this question, he
also received first results in this direction. Later, as a result of
correspondence with him, I also became involved in this problem.



Fixed point selection functions

Definition (for binary functions).
Let h(n, x) be a function of two arguments, and each unary
function λx .h(n, x) have a fixed-point xn: Φxn ' Φh(n,xn)). Let’s
call the function f (n) = xn the fixed point selection function for the
sequence {h(n, x)}n∈ω (FP-selection function, for short).

Definition (for subsets of ω)
Suppose that A is a c.e. set such that any total unary function
h ≤T A have a fixed point, and let f be a unary partial function
such that for every e, if the unary function {λx .ΦA

e (x)} is total
then f (e) defined and Φf (e) ' ΦΦA

e (f (e)).
We will say that f is a fixed-point selection function for the set A.
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This definition depends on the arity of h.

Suppose that every computable in A unary function have a fixed
point and let h be a binary function computable in A:
h(x , y) = ΦA

e (x , y). Then for each fixed y , the function λx .h(x , y)
have a fixed point (which obviously depends on y :
(∃xy (Φxy ' Φh(xy ,y)).
Let f be a fixed-point selection function for the sequence
{h(x , 0), h(x , 1), . . . , }:

(∀x)(Φf (x) ' Φh(x ,f (x)))

In general, the degree of the FP-selection function f depends on
the selected Turing functional ΦA

e (= h).
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Kleene’s Recursion Theorem

Any computable set have a computable fixed-point selection
function.

Now consider my completeness criterion for c.e. sets.

Theorem (A.’1977)
Let A be an incomplete c.e. set (∅′ 6≤T A). Then A have a
fixed-point selection function; i.e. there is a partial function f such
that

(∀e)[ΦA
e total→ f(e) ↓ & ΦΦA

e (f(e)) ' Φf(e)]
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Theorem
A c.e. set A is incomplete if and only if it have a total fixed-point
selection function f (e): for all e,

ΦA
e (f (e)) ↓→ Φf (e) ' ΦΦA

e (f (e))

Theorem
For any c.e. set A, if ∅′ 6≤T A, then A have a total fixed-point
selection function f ≤T A.



Theorem
A c.e. set A is incomplete if and only if it have a total fixed-point
selection function f (e): for all e,

ΦA
e (f (e)) ↓→ Φf (e) ' ΦΦA

e (f (e))

Theorem
For any c.e. set A, if ∅′ 6≤T A, then A have a total fixed-point
selection function f ≤T A.



Theorem (Terwijn’2018)
There exist a low c.e. set A (A′ ≡T ∅′) and a binary function
h ≤T A such that for every computable f , there exists n with
Φf (n) 6' Φh(n,f (n)).

In other words, there is a low c.e. set A which have no computable
fixed point selection functions.

Theorem
Let A be an arbitrary non-computable c.e. set and ∅′ 6≤T A.
a) There is a binary function h, h ≡T A, which have no computable
FP-selection functions;

b) There is a binary function ψ(e, x), ψ ≤T A, such that for any
binary function h = ΦA

e , (∀n){Φψ(e,n) ' Φh(n,ψ(e,n))}.
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Sketch of the proof for a).
Let A be a non-computable c.e. set, ∅′ 6≤T A. We build a total binary
function h ≤T A in an ω-sequence of cycles meeting following
requirements:

Re : f = Φe total→ (∃n)[Wf(n) 6= Wh(n,f(n))]

For each Re we at a cycle k pick as a witness an integer n from a
column assigned for Re and wait for Φe(n)(= f (n)) ↓ at a stage s. If
Wf (n),s 6= ∅ then define h(n, f (n)) so that Wh(n,f (n)) = ∅ forever,
satisfying Re . If not, define h(n, f (n)) with a big A-use so that
Wh(n,f (n)) 6= ∅, and wait for a later stage t > s when Wf (n),t again
becomes nonempty. Now we have to change h(n, f (n)) to make Wh(n,f (n))

empty. For this we wait for A-change below its use at stage s, and open a
new cycle k + 1 with a new bigger witness, and proceed by the same way.

Since A is non-computable, there must be a cycle when we have a
success.
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It is easy achieve deg (A) =deg (h), proceeding the previous
construction for even arguments of h, and coding the set A in its
odd arguments.

For part b) adapt my proof of the completeness criterion.



Questions

What can we say about the complexity of the FP-selection
functions?

In the general setting: is there a relationship between the
complexity (in several senses) of fixed point selection functions for a
set A and the complexity of the set A itself (also in several senses).



Open Questions

Question 1.
Can non-computable c.e. set A, ∅′ 6≤T A, have a computable
FP-selection function?
Assumed answer: no.

Conjecture.
For any c.e. set A, existence of a computable FP-selection function
entails computability of A.

Theorem
For any non-computable c.e. set A there is a non-computable
binary function λe, x .h(e, x), h ≤T A such that the sequence
h(0, x), h(1, x), . . . have a computable FP-selection function.
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Open Questions

Question 2.
Are there incomplete c.e. sets A such that they have a fixed point
selection function f with f <T A?

Question 3. Is the following true:
let ψ be a non-computable binary function, deg(ψ) < 0′ and a be a
c. e. degree such that deg(ψ) < a < 0′. Then is there a c. e. set
A ∈ a such that ψ is a fixed-point selection function for A?
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Remark.
I think that FP-selection functions of non-computable and
non-complete c.e. sets coincide with the degrees of these sets.

To prove that we can try to construct a suitable binary Turing
reducible to this set A (say) function, which codes the information
on the membership in A. Then use this property to try to Turing
reduce the set A to its FP-selection function.

But I can not yet to convert this idea into a strict proof.



Question 3′. Is the following true:

Let 0 < b < a < 0′ be c.e. degrees. Then

a) For every c. e. set A ∈ a there is binary function ψ ∈ b such
that ψ is a fixed-point selection function for A.

b) For every binary total function ψ ∈ b there is a c.e. set A ∈ a
such that ψ is a fixed-point selection function for A.

Theorem.
let ψ be a non-computable unary function, deg(ψ) < 0′ and a be a
c. e. degree such that deg(ψ) < a < 0′. Then there is a binary
function h(e, x) such that deg (h) = a and ψ is a fixed-point
selection function for h: Φψ(e) ' Φh(ψ(e)).
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m-and tt-completeness criterions

Definition.
Let A be a c.e. set. By definition a function f : ω 7→ ω is
m-(tt-)reducible to A, if there are computable functions a, b and h
such that

f (x) =

{
a(x), if h(x) ∈ A;
b(x), if h(x) 6∈ A.

and, accordingly,

f (x) =

{
a(x), if A |= τh(x);
b(x), if A 6|= τh(x).
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m-and tt-completeness criterions

Theorem (m-completeness criterion; A.’1987)
Let A be a c.e. set. Then A is m-complete if and only if there is a
function f ≤m A without fixed-points: (∀x){Φf (x) 6' Φx}.

Theorem (tt-completeness criterion; A.’1987)
Let A be a c.e. set. Then A is tt-complete if and only if there is a
function f ≤tt A without fixed-points: (∀x){Φf (x) 6' Φx}.
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Let {Ωi ,Ψj ,Θk}e=〈i ,j ,k〉∈ω be an enumeration of partial
computable functions Ω,Ψ and Θ. Define Φe(x) = Ωi (x), if
Θk(x) ↓ &Θk(x) ∈ A (A |= τΘk (x)), and Φe(x) = Ψj(x), if
Θk(x) ↓ &Θk(x) 6∈ A (A 6|= τΘk (x)).

The enumeration {Φe}e∈ω contains the list of m-(tt-) reducible to
A functions: by definition, the function Φe is m-(tt-) reducible to A,
if it is total.
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Theorem
There exists a non-computable c.e. set A such that for any total
binary function h ≤m A (for any total binary function h ≤tt A),
- if there is a computable ≤m-fixed-point selection function f for
the sequence {h(x , n) : n ∈ ω}, then h is computable.
- if there is a computable ≤tt-fixed-point selection function f for
the sequence {h(x , n) : n ∈ ω}, then h is computable.

- there is a noncomputable total binary function h ≤T A such that
it have a computable fixed-point selection function.

Theorem
For any c.e. set A if for any total binary function h ≤m A, there is a
computable ≤m-fixed-point selection function f for the sequence
{h(x , n) : n ∈ ω}, then A is computable.
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Connection with Kolmogorov complexity

Let M be a universal Turing machine which is optimal for Turing
machines U : 2<ω → 2<ω :

if M is any such machine, then KU(σ) ≤+ KM(σ). Then let
KM(σ) = min{|τ | : M(τ) = σ},

so KM(σ) is the length of the shortest M-description of σ.

We write K (σ) for KM(σ) and call it the Plain (Kolmogorov)
complexity of σ ∈ 2<ω.
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Definition (Kjos-Hanssen, Merkle, and Stephan’2011)
a) A set A is complex if there is an nondecreasing and unbounded
computable function g such that for all n,

K (Adn) ≥ g(n).

Here Adn is the finite binary sequence A(0),A(1), . . .A(n − 1).

b) A set A is autocomplex if there is an nondecreasing and
unbounded function g ≤T A such that K (Adn) ≥ g(n) for all y .
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Theorem (Kjos-Hanssen, Merkle, and Stephan’2011)
Let A be a c.e. set. If there is an unbounded function g ≤T A
which bounds from below initial segments of A (i. e.
K (Adn) ≥ g(n) for all n), then there are no FP-selection functions
f ≤T A for A, and vice-versa.

Corollary.
Let A be a c.e. set. Then there is a FP-selection function f ≤T A
for A if and only if A is non autocomplex.
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Definition (Ishmukhametov’1999)
A set A is c.e. traceable (weak computable) if there is a
computable function f such that for every function g ≤T A, there
is a computable function h such that |Wh(n)| ≤ f (n) for every n,
and g(n) ∈Wh(n) for all n (Wh(n) is a trace for g(n))



Definition (Lewis-Pye’2007)
A set A is weakly c.e. traceable if there is a computable function f
such that for every function g ≤T A, there is a computable
function h(n) such that |Wh(n)| ≤ f (n) for every n,
and g(n) ∈Wh(n) for infinitely many n
(and similarly Wh(n) is a weak trace for g(n)).



Theorem (Lewis-Pye’2007)
For every c.e. set A the following are equivalent:

1. A have a fixed-point selection function h ≤T A;
2. A is weakly c.e. traceable.



Precomplete Numberings

Definition
A numbering of a set S is a surjection γ : ω → S .
Given γ, define an equivalence relation on ω by n ∼γ m if
γ(n) = γ(m).
A numbering γ is precomplete if for every partial computable unary
function ψ there exists a computable unary f such that for every n,

ψ(n) ↓⇒ f (n) ∼γ ψ(n)

(f totalizes ψ modulo ∼γ .)

A precomplete numbering γ is complete if there is a special element
a ∈ ω such that also f (n) ∼γ a for every n with ψ(n) ↑.
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Precomplete Numberings

Theorem (Ershov’1975)
Let γ be a precomplete numbering, and let h be a computable
function. Then h has a fixed point modulo ∼γ , i. e. there exists
n ∈ ω such that h(n) ∼γ n.

Theorem (Ershov’s Recursion Theorem with
Parameters)
Let γ be a precomplete numbering, and let h(x , n) be a binary
computable function. Then there exists a computable function f
such that for every n, f (n) ∼γ h(f (n), n).
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Precomplete Numberings

Theorem (Completeness Criterion for Precomplete
Numberings; Barendregt, Terwijn,2019)
Let γ be a precomplete numbering, and let A <T ∅′ be a
incomplete c.e. set. If g an A-computable function, then g has a
fixed point modulo γ, i. e. there exists a n ∈ ω such that g(n) ∼γ n.



Precomplete Numberings

Theorem
Let γ be a precomplete numbering.
a) If A is an incomplete c.e. set, then there is a non-computable
binary function h ≤T A such that the sequence h(0, x), h(1, x), . . .
have a computable FP-selection function f : for every n,
f (n) ∼γ h(f (n), n).

b) For any non-computable c.e. set A there is a binary function
h ≤T A such that for every computable f , there exists n with
f (n) 6∼γ h(n, f (n)).
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