Publications

Effective categoricity

  1. Computability of distributive lattices, Sib. Math. J., 2017, 58:6, 959-970. With Andrey Frolov, Iskander Kalimullin, and Alexander Melnikov.
  2. Computable bi-embeddable categoricity of equivalence structures, in Proceedings of the 11th Panhellenic Logic Symposium (Delphi, Greece, July 12-16, 2017), 126-132. With Ekaterina Fokina, Dino Rossegger, and Luca San Mauro.
  3. Effective categoricity for distributive lattices and Heyting algebras, Lobachevskii J. Math., 2017, 38:4, 600-614.
  4. Degrees of categoricity of rigid structures, in Proceedings of CiE-2017 (Lect. Notes Comput. Sci., 10307), 152-161. With Mars Yamaleev.
  5. A note on effective categoricity for linear orderings, in Proceedings of TAMC-2017 (Lect. Notes Comput. Sci., 10185), 85-96.
  6. Degrees of autostability for linear orders and linearly ordered abelian groups, Algebra Logic, 2016, 55:4, 257-273.
  7. Degrees of categoricity vs. strong degrees of categoricity, Algebra Logic, 2016, 55:2, 173-177. With Iskander Kalimullin and Mars Yamaleev.
  8. Categoricity spectra for polymodal algebras, Studia Logica, 2016, 104:6, 1083-1097.
  9. The branching theorem and computable categoricity in the Ershov hierarchy, Algebra Logic, 2015, 54:2, 91-104.
  10. Autostability spectra for Boolean algebras, Algebra Logic, 2014, 53:6, 502-505.
  11. Δ02-categoricity of Boolean algebras, J. Math. Sci., 2014, 203:4, 444-454.
  12. Hyperaritmetical categoricity of Boolean algebras of type B(ωα×η), J. Math. Sci., 2014, 202:1, 40-49.
  13. Degrees of categoricity for superatomic Boolean algebras, Algebra Logic, 2013, 52:3, 179-187.

Effective categoricity for decidable structures (autostability relative to strong constructivizations)

  1. The index set of the groups autostable relative to strong constructivizations, Sib. Math. J., 2017, 58:1, 72-77. With Sergey Goncharov and Margarita Marchuk.
  2. Autostability spectra for decidable structures, Math. Struct. Comput. Sci., 2018, 28:3, 392-411.
  3. Degrees of autostability relative to strong constructivizations for Boolean algebras, Algebra Logic, 2016, 55:2, 87-102.
  4. The index set of linear orderings that are autostable relative to strong constructivizations [in Russian], Vestnik Novosibirsk. Gos. Univ., Ser. Mat. Mekh. Inform., 2015, 15:3, 51-60. With Sergey Goncharov and Margarita Marchuk. English translation: Index set of linear orderings that are autostable relative to strong constructivizations, J. Math. Sci., 2017, 221:6, 840-848.
  5. Index sets of autostable relative to strong constructivizations constructive models for familiar classes, Dokl. Math., 2015, 92:2, 525-527. With Sergey Goncharov and Margarita Marchuk.
  6. Prime model with no degree of autostability relative to strong constructivizations [pdf download], in Proceedings of CiE-2015 (Lect. Notes Comput. Sci., 9136), 117-126.
    The final publication is available at link.springer.com, DOI 10.1007/978-3-319-20028-6_12 .
  7. The index set of Boolean algebras autostable relative to strong constructivizations, Sib. Math. J., 2015, 56:3, 393-404. With Sergey Goncharov and Margarita Marchuk.

Turing computable embeddings

Turing computable embeddings, computable infinitary equivalence, and linear orders [pdf download], in Proceedings of CiE-2017 (Lect. Notes Comput. Sci., 10307), 141-151. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-58741-7_15

Computably enumerable structures and equivalence relations

  1. On dark computably enumerable equivalence relations, Sib. Math. J., 2018, 59:1, 22-30. With Birzhan Kalmurzaev.
  2. Boolean algebras realized by c.e. equivalence relations, Siberian Electronic Mathematical Reports, 2017, 14, 848-855. With Manat Mustafa, Frank Stephan, and Mars Yamaleev.

Boolean algebras with distinguished endomorphisms

  1. Boolean algebras with distinguished endomorphisms and generating trees [in Russian], Vestnik Novosibirsk. Gos. Univ., Ser. Mat. Mekh. Inform., 2015, 15:1, 29-44. English translation: Boolean algebras with distinguished endomorphisms and generating trees, J. Math. Sci., 2016, 215:4, 460-474.
  2. D.c.e. degrees of categoricity for Boolean algebras with a distingushed automorphism [in Russian], Vestnik Novosibirsk. Gos. Univ., Ser. Mat. Mekh. Inform., 2014, 14:1, 19-27. English translation: 2-computably enumerable degrees of categoricity for Boolean algebras with distinguished automorphisms, J. Math. Sci., 2015, 211:6, 738-746.
  3. Computable numberings of the class of Boolean algebras with distinguished endomorphisms, Algebra Logic, 2013, 52:5, 355-366.
  4. Computable categoricity of the Boolean algebra B(ω) with a distinguished automorphism, Algebra Logic, 2013, 52:2, 89-97. With Regina Tukhbatullina.
  5. Constructivizability of the Boolean algebra B(ω) with a distinguished automorphism, Algebra Logic, 2012, 51:5, 384-403. With Regina Tukhbatullina.

Automatic structures

Automatic structures and the theory of lists, Siberian Electronic Mathematical Reports, 2015, 12, 714-722.

Last updated: March 10, 2018.